MINIMAL REALIZATION AND MODEL REDUCTION OF STRUCTURED SYSTEMS

Peter Benner Igor Duff Pontes Pawan Goyal

Numerical Analysis and Scientific Computing Seminar
Courant Institute, NYU
September 13, 2019

Supported by:
1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
1. Introduction
 Model Reduction of Linear Systems
 Structured Linear Systems
 Projection-based Framework
 Existing Approaches

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
Original System \((E = I_n)\)

\[\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases} \]

- states \(x(t) \in \mathbb{R}^n\),
- inputs \(u(t) \in \mathbb{R}^m\),
- outputs \(y(t) \in \mathbb{R}^p\).

Goals:

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \text{ for all admissible input signals.} \]
Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System ($E = I_n$)

$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \\ \hat{y}(t) = \hat{C}\hat{x}(t) + \hat{D}u(t). \end{cases}$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goals:

$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.
Model Reduction of Linear Systems

Linear Time-Invariant (LTI) Systems

Original System \((E = I_n)\)

\[\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases} \]

- states \(x(t) \in \mathbb{R}^n\),
- inputs \(u(t) \in \mathbb{R}^m\),
- outputs \(y(t) \in \mathbb{R}^p\).

Reduced-Order Model (ROM)

\[\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \\ \hat{y}(t) = \hat{C}\hat{x}(t) + \hat{D}u(t). \end{cases} \]

- states \(\hat{x}(t) \in \mathbb{R}^r, r \ll n\)
- inputs \(u(t) \in \mathbb{R}^m\)
- outputs \(\hat{y}(t) \in \mathbb{R}^p\).

Goals:

\[||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \] for all admissible input signals.
Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System \((E = I_n)\)

\[\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}\]
- states \(x(t) \in \mathbb{R}^n\),
- inputs \(u(t) \in \mathbb{R}^m\),
- outputs \(y(t) \in \mathbb{R}^p\).

Reduced-Order Model (ROM)

\[\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \\ \hat{y}(t) = \hat{C}\hat{x}(t) + \hat{D}u(t). \end{cases}\]
- states \(\hat{x}(t) \in \mathbb{R}^r, r \ll n\)
- inputs \(u(t) \in \mathbb{R}^m\),
- outputs \(\hat{y}(t) \in \mathbb{R}^p\).

Goals:

\[||y - \hat{y}|| < \text{tolerance} \cdot ||u||\] for all admissible input signals.

Secondary goal: reconstruct approximation of \(x\) from \(\hat{x}\).
Application of **Laplace transform** \((x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s) - x(0)) \) to LTI system

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

with \(x(0) = 0 \) yields:

\[
sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),
\]
Linear Systems in Frequency Domain

Application of **Laplace transform** \((x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s) - x(0))\) to LTI system

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

with \(x(0) = 0\) yields:

\[
sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),
\]

\[\implies\] I/O-relation in frequency domain:

\[
y(s) = \left(C(sI_n - A)^{-1} B + D \right) u(s).
\]

\(H(s)\) is the **transfer function** of \(\Sigma\).
Linear Systems in Frequency Domain

Application of Laplace transform \((x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s) - x(0)) \) to LTI system

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

with \(x(0) = 0 \) yields:

\[
sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),
\]

\[\implies\] I/O-relation in frequency domain:

\[
y(s) = \left(C(sI - A)^{-1}B + D\right)u(s).
\]

\(H(s) \) is the transfer function of \(\Sigma \).

Model reduction in frequency domain: Fast evaluation of mapping \(u \to y \).
Formulating model reduction in frequency domain

Approximate the dynamical system

\[
\begin{align*}
\dot{x} &= Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\
y &= Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m},
\end{align*}
\]

by reduced-order system

\[
\begin{align*}
\dot{\hat{x}} &= \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m}, \\
\hat{y} &= \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{p \times r}, \ \hat{D} \in \mathbb{R}^{p \times m}
\end{align*}
\]

of order \(r \ll n \), such that

\[
\|y - \hat{y}\| = \|Hu - \hat{Hu}\| \leq \|H - \hat{H}\| \cdot \|u\| < \text{tolerance} \cdot \|u\|.
\]

\[\implies \text{Approximation problem:} \quad \min_{\text{order } (\hat{H}) \leq r} \|H - \hat{H}\|,
\]

where, mostly, \(\| \cdot \| = \| \cdot \|_{\mathcal{H}_\infty} \text{ or } \| \cdot \| = \| \cdot \|_{\mathcal{H}_2} \).
Second-order / mechanical / vibrational systems:

\[M\ddot{x}(t) + L\dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]
Second-order / mechanical / vibrational systems:

\[M\ddot{x}(t) + L\dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\mapsto \)

\[s^2 Mx(s) + sLx(s) + Kx(s) = Bu(s), \quad y(s) = C_p x(s) + sC_v x(s) \]
Second-order / mechanical / vibrational systems:

\[M\ddot{x}(t) + L\dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\Laplace \):

\[s^2 Mx(s) + sLx(s) + Kx(s) = Bu(s), \quad y(s) = C_p x(s) + sC_v x(s) \]

\[\Rightarrow y(s) = (C_p + sC_v)(s^2 M + sL + K)^{-1} Bu(s) =: C(s)K(s)^{-1} B(s) u(s) \]
Second-order / mechanical / vibrational systems:

\[M \ddot{x}(t) + L \dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\Rightarrow \)

\[s^2 M x(s) + s L x(s) + K x(s) = B u(s), \quad y(s) = C_p x(s) + s C_v x(s) \]

\[\Rightarrow y(s) = (C_p + s C_v)(s^2 M + s L + K)^{-1} B u(s) =: C(s) K(s)^{-1} B(s) u(s) \]

Time-delay systems:

\[E \dot{x}(t) = A_1 x(t) + A_2 x(t - \tau) + B u(t), \quad y(t) = C x(s) \]
Second-order / mechanical / vibrational systems:

\[M\ddot{x}(t) + L\dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\mapsto \)

\[s^2 Mx(s) + sLx(s) + Kx(s) = Bu(s), \quad y(s) = C_p x(s) + sC_v x(s) \]

\[\implies y(s) = (C_p + sC_v)(s^2 M + sL + K)^{-1} Bu(s) =: C(s)K(s)^{-1} B(s) u(s) \]

Time-delay systems:

\[Ex(t) = A_1 x(t) + A_2 x(t - \tau) + Bu(t), \quad y(t) = Cx(s) \]

Apply Laplace transform \(\mapsto \)

\[sEx(s) = A_1 x(s) + e^{-\tau s} A_2 x(s) + Bu(s), \quad y(s) = Cx(s) \]
Second-order / mechanical / vibrational systems:

\[M \ddot{x}(t) + L \dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\rightarrow \)

\[s^2 Mx(s) + sLx(s) + Kx(s) = Bu(s), \quad y(s) = C_p x(s) + sC_v x(s) \]

\[\implies y(s) = (C_p + sC_v)(s^2 M + sL + K)^{-1}Bu(s) =: C(s)K(s)^{-1}B(s)u(s) \]

Time-delay systems:

\[E \dot{x}(t) = A_1 x(t) + A_2 x(t - \tau) + Bu(t), \quad y(t) = Cx(s) \]

Apply Laplace transform \(\rightarrow \)

\[sEx(s) = A_1 x(s) + e^{-\tau s} A_2 x(s) + Bu(s), \quad y(s) = Cx(s) \]

\[\implies y(s) = C(sE - A_1 - e^{-\tau s} A_2)^{-1}Bu(s) =: C(s)K(s)^{-1}B(s)u(s) \]
Second-order / mechanical / vibrational systems:

\[M\ddot{x}(t) + L\dot{x}(t) + Kx(t) = Bu(t), \quad y(t) = C_p x(t) + C_v \dot{x}(t). \]

Apply Laplace transform \(\Rightarrow \)

\[s^2 Mx(s) + sLx(s) + Kx(s) = Bu(s), \quad y(s) = C_p x(s) + sC_v x(s) \]

\[\Rightarrow y(s) = (C_p + sC_v)(s^2 M + sL + K)^{-1}Bu(s) =: \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s)u(s) \]

Time-delay systems:

\[Ex(t) = A_1 x(t) + A_2 x(t - \tau) + Bu(t), \quad y(t) = Cx(s) \]

Apply Laplace transform \(\Rightarrow \)

\[sEx(s) = A_1 x(s) + e^{-\tau s}A_2 x(s) + Bu(s), \quad y(s) = Cx(s) \]

\[\Rightarrow y(s) = C(sE - A_1 - e^{-\tau s}A_2)^{-1}Bu(s) =: \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s)u(s) \]

Other examples: integro-differential / fractional systems, systems with surface loss, 1D PDE control, \ldots Note: all systems are linear w.r.t. the mapping \(u \rightarrow y \)!
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

where

\[
C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s)B_i,
\]
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

where

\[
C(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s)B_i,
\]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m} \), and \(C_i \in \mathbb{R}^{p \times n} \), and \(\alpha_i(s), \beta_i(s) \) and \(\gamma_i(s) \) are meromorphic functions.
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

(1)

where

\[
C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s)B_i,
\]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m} \), and \(C_i \in \mathbb{R}^{p \times n} \), and \(\alpha_i(s), \beta_i(s) \) and \(\gamma_i(s) \) are meromorphic functions.
- For simplicity, in this talk \(p = m = 1 \) (SISO case).
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

(1)

where

\[
C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s) C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s) A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s) B_i,
\]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m},\) and \(C_i \in \mathbb{R}^{p \times n},\) and \(\alpha_i(s), \beta_i(s)\) and \(\gamma_i(s)\) are meromorphic functions.
- For simplicity, in this talk \(p = m = 1\) (SISO case).
- We assumed that \(E\) is invertible (no descriptor behavior).
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

where

\[
C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s)B_i,
\]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m} \), and \(C_i \in \mathbb{R}^{p \times n} \), and \(\alpha_i(s), \beta_i(s) \) and \(\gamma_i(s) \) are meromorphic functions.
- For simplicity, in this talk \(p = m = 1 \) (SISO case).
- We assumed that \(E \) is invertible (no descriptor behavior).

1) **First-order systems:** \(C(s) = C, \ B(s) = B, \) and \(K(s) = sE - A. \)
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[
H(s) = C(s)K(s)^{-1}B(s),
\]

where

\[
C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s)B_i,
\]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m}\), and \(C_i \in \mathbb{R}^{p \times n}\), and \(\alpha_i(s), \beta_i(s)\) and \(\gamma_i(s)\) are meromorphic functions.
- For simplicity, in this talk \(p = m = 1\) (SISO case).
- We assumed that \(E\) is invertible (no descriptor behavior).

1) **First-order systems:** \(C(s) = C, B(s) = B,\) and \(K(s) = sE - A.\)
2) **Second-order systems:** \(C(s) = C_p + sC_v, B(s) = B,\) and \(K(s) = s^2M + sL + K.\)
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

\[H(s) = C(s)K(s)^{-1}B(s), \]

where

\[C(s) = \sum_{i=1}^{\ell_\gamma} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_\alpha} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_\beta} \beta_i(s)B_i, \]

- with \(E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m}, \) and \(C_i \in \mathbb{R}^{p \times n}, \) and \(\alpha_i(s), \beta_i(s) \) and \(\gamma_i(s) \) are meromorphic functions.
- For simplicity, in this talk \(p = m = 1 \) (SISO case).
- We assumed that \(E \) is invertible (no descriptor behavior).

1) **First-order systems:** \(C(s) = C, \) \(B(s) = B, \) and \(K(s) = sE - A. \)
2) **Second-order systems:** \(C(s) = C_p + sC_v, \) \(B(s) = B, \) and \(K(s) = s^2M + sL + K. \)
3) **Time-delay systems:** \(C(s) = C, \) \(B(s) = B, \) and \(K(s) = sE - A_1 - A_2e^{-s\tau}. \)
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

$$
H(s) = C(s)K(s)^{-1}B(s),
$$

where

$$
C(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s)B_i,
$$

- with $E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m},$ and $C_i \in \mathbb{R}^{p \times n},$ and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk $p = m = 1$ (SISO case).
- We assumed that E is invertible (no descriptor behavior).

1) **First-order systems:** $C(s) = C, B(s) = B,$ and $K(s) = sE - A.$
2) **Second-order systems:** $C(s) = C_p + sC_v, B(s) = B,$ and $K(s) = s^2M + sL + K.$
3) **Time-delay systems:** $C(s) = C, B(s) = B,$ and $K(s) = sE - A_1 - A_2e^{-s\tau}.$
4) **EM w/ surface loss:** $C(s) = sB, B(s) = B,$ and $K(s) = s^2M + sL + K - \frac{1}{\sqrt{s}}N.$
Consider **Structured Linear System (SLS)** in frequency domain, using general set-up:

$$H(s) = C(s)K(s)^{-1}B(s),$$

where

$$C(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s)C_i, \quad K(s) = sE - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s)A_i, \quad B(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s)B_i,$$

- with $E, A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{n \times m}$, and $C_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk $p = m = 1$ (SISO case).
- We assumed that E is invertible (no descriptor behavior).

1) **First-order systems:** $C(s) = C$, $B(s) = B$, and $K(s) = sE - A$.
2) **Second-order systems:** $C(s) = C_p + sC_v$, $B(s) = B$, and $K(s) = s^2M + sL + K$.
3) **Time-delay systems:** $C(s) = C$, $B(s) = B$, and $K(s) = sE - A_1 - A_2e^{-s\tau}$.
4) **EM w/ surface loss:** $C(s) = sB$, $B(s) = B$, and $K(s) = s^2M + sL + K - \frac{1}{\sqrt{s}}N$.
5) **Integro-differential Volterra systems, input delays, fractional systems . . .
Given a large-scale SLS

\[H(s) = C(s)K(s)^{-1}B(s), \]
Given a large-scale SLS

\[\mathbf{H}(s) = \mathbf{C}(s)\mathbf{K}(s)^{-1}\mathbf{B}(s), \]

find projection matrices

\[\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T\mathbf{V} = \mathbf{I}_r, \]

(with \(r \ll n \)), such that

\[\hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s)\hat{\mathbf{K}}(s)^{-1}\hat{\mathbf{B}}(s), \]

where
Given a large-scale SLS

\[H(s) = C(s)K(s)^{-1}B(s), \]

find projection matrices

\[V, W \in \mathbb{R}^{n \times r}, \quad W^T V = I_r, \]

(with \(r \ll n \)), such that

\[\hat{H}(s) = \hat{C}(s)\hat{K}(s)^{-1}\hat{B}(s), \quad \text{where} \]

\[\hat{K}(s) = W^T K(s) V, \quad \hat{B}(s) = W^T B(s) \]

and \(\hat{C}(s) = C(s) V \)
Given a large-scale SLS

\[H(s) = C(s)K(s)^{-1}B(s), \]

find projection matrices

\[V, W \in \mathbb{R}^{n \times r}, \quad W^T V = I_r, \]

(with \(r \ll n \)), such that

\[\hat{H}(s) = \hat{C}(s)\hat{K}(s)^{-1}\hat{B}(s), \]

where

\[\hat{K}(s) = W^T K(s) V, \hat{B}(s) = W^T B(s) \]

and \(\hat{C}(s) = C(s)V \)

- Note \(\hat{A}_i = W^T A_i V, \hat{E} = W^T E V, \hat{C}_i = C_i V \) and \(\hat{B}_i = W^T B_i \).
- The ROM preserves the \(\alpha_i(s), \beta_i(s) \) and \(\gamma_i(s) \) functions.
Interpolation-based methods

- Interpolatory projection methods for structure-preserving model reduction.
 \[\text{Beattie/Gugercin '09}\]

Interpolation points $\sigma_k, \mu_j \Rightarrow$

\[
\begin{align*}
\mathcal{K}^{-1}(\sigma_k)B(\sigma_k) & \in \text{range (V)} \quad \text{and} \\
\mathcal{K}^{-T}(\mu_k)C^T(\mu_j) & \in \text{range (W)}.
\end{align*}
\]
Interpolation-based methods

- Interpolatory projection methods for structure-preserving model reduction.
 \[\text{Beattie/Gugercin '09} \]

Balancing truncation methods

 \[\text{Breiten '16} \]

\[
\begin{align*}
P &= \frac{1}{2\pi} \int_{-i\infty}^{i\infty} K_s(s)^{-1} \mathcal{B}(s) \mathcal{B}(s)^T K(s)^{-T} ds, \\
Q &= \frac{1}{2\pi} \int_{-i\infty}^{i\infty} K_s(s)^{-T} \mathcal{C}(s)^T \mathcal{C}(s) K(s)^{-1} ds.
\end{align*}
\]

\[\Rightarrow \text{Find } V, W \text{ from } T^{-1} P Q T = \Sigma. \]
Interpolation-based methods

- Interpolatory projection methods for structure-preserving model reduction.
 \[\text{Beattie/Gugercin '09}\]

Balancing truncation methods

 \[\text{Breiten '16}\]

Data-driven methods

- Data-driven structured realization.
 \[\text{Schulze/Unger/Beattie/Gugercin '18}\]
1. Introduction

2. Minimal Realization
 - Motivation
 - ... of Structured Linear Systems
 - Some Results

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
Let us consider the first order system

\[H(s) = C(sI - A)^{-1}B, \quad \text{with} \quad A = \begin{bmatrix} -1 & -1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \text{and} \quad C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \]
Let us consider the first order system

$$H(s) = C(sI - A)^{-1}B,$$

with

$$A = \begin{bmatrix} -1 & -1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \text{and} \quad C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Note that

$$H(s) = \frac{1}{s + 2} = \hat{H}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B},$$

with

$$\hat{A} = -2, \quad \hat{B} = 1 \quad \text{and} \quad \hat{C} = 1.$$
Let us consider the first order system

\[H(s) = C(sI - A)^{-1}B, \quad \text{with} \quad A = \begin{bmatrix} -1 & -1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \text{and} \quad C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \]

Note that \(H(s) = \frac{1}{s+2} = \hat{H}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B}, \) with \(\hat{A} = -2, \hat{B} = 1 \) and \(\hat{C} = 1. \)

Minimal realization problem

Find order \(r \) and matrices \(V \) and \(W \) such that the reduced-order model obtained by projection satisfies

\[H(s) = \hat{H}(s), \quad \forall s. \]
Let us consider the first order system

\[H(s) = C(sI - A)^{-1}B, \text{ with } A = \begin{bmatrix} -1 & -1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ and } C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \]

Note that \(H(s) = \frac{1}{s + 2} = \hat{H}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B}, \) with \(\hat{A} = -2, \hat{B} = 1 \) and \(\hat{C} = 1. \)

Minimal realization problem

Find order \(r \) and matrices \(V \) and \(W \) such that the reduced-order model obtained by projection satisfies

\[H(s) = \hat{H}(s), \forall s. \]

Solutions:

- Kalman reachability/observability criteria,
- Hankel matrix (Silverman method),
- reachability and observability Gramians,
- **Loewner matrix.**
 [Mayo/Antoulas '07]
For illustration, consider the **time-delay systems**

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1} B, \]

with

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \]

\[B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}. \]
For illustration, consider the **time-delay systems**

\[
 H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \quad \text{with}
\]

\[
 A_1 = \begin{bmatrix}
 -1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & -1
 \end{bmatrix},
 A_2 = \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0 & 0 \\
 1 & 0 & 0
 \end{bmatrix},
\]

\[
 B^T = \begin{bmatrix}
 1 & 0 & 0
 \end{bmatrix}
 \quad \text{and}
 \quad C = \begin{bmatrix}
 1 & 1 & 0
 \end{bmatrix}.
\]

\[
 \hat{H}(s) = \hat{C}(sI - \hat{A}_2 - \hat{A}_2 e^{-s})^{-1}\hat{B}, \quad \text{with}
\]

\[
 \hat{A}_1 = \begin{bmatrix}
 -1 & 0 \\
 0 & -1
 \end{bmatrix},
 \hat{A}_2 = \begin{bmatrix}
 1 & 0 \\
 1 & 0
 \end{bmatrix},
\]

\[
 \hat{B} = \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}
 \quad \text{and}
 \quad \hat{C}^T = \begin{bmatrix}
 1 \\
 1
 \end{bmatrix}.
\]
For illustration, consider the time-delay systems

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1} B, \quad \text{with} \]

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \]

\[B^T = [1 \ 0 \ 0] \quad \text{and} \quad C = [1 \ 1 \ 0]. \]

\[\hat{H}(s) = \hat{C}(sI - \hat{A}_2 - \hat{A}_2 e^{-s})^{-1} \hat{B}, \quad \text{with} \]

\[\hat{A}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \hat{A}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \]

\[\hat{B} = [1 \ 0] \quad \text{and} \quad \hat{C}^T = [1 \ 1]. \]

- \[H(s) = \hat{H}(s), \forall s. \]
For illustration, consider the time-delay systems

\(H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B \), with

\[
A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},
A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},
\]

\(B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \) and \(C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \).

\(\hat{H}(s) = \hat{C}(sI - \hat{A}_2 - \hat{A}_2 e^{-s})^{-1}\hat{B}, \) with

\[
\hat{A}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},
\hat{A}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix},
\]

\(\hat{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\hat{C}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

- \(H(s) = \hat{H}(s), \forall s. \)
- \(H \) has order 3 and \(\hat{H} \) order 2.
For illustration, consider the time-delay systems

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \text{ with } \]

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \]

\[B^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}. \]

\[\hat{H}(s) = \hat{C}(sI - \hat{A}_2 - \hat{A}_2 e^{-s})^{-1}\hat{B}, \text{ with } \]

\[\hat{A}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \hat{A}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \]

\[\hat{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \hat{C}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

Minimal realization problem

Is there a way to find the order \(r \) and matrices \(V, W \in \mathbb{R}^{n \times r} \) such that the system \(\hat{H}(s) \) obtained by projection is "minimal", i.e.

\[H(s) = \hat{H}(s), \forall s? \]
Given a first order system

\[H(s) = C(sE - A)^{-1}B, \text{ with } E \in \mathbb{R}^{n \times n} \text{ invertible.} \]
Given a first order system

\[H(s) = C(sE - A)^{-1}B, \text{ with } E \in \mathbb{R}^{n \times n} \text{ invertible.} \]

Reachability characterization

[Anderson/Antoulas ’90]

If \((E, A, B)\) is \(\mathbb{R}^n\)-reachable, \(t \geq n\), \(\sigma_i \neq \sigma_j\) for \(i \neq j\), and

\[R = \begin{bmatrix} (\sigma_1 E - A)^{-1}B & \ldots & (\sigma_t E - A)^{-1}B \end{bmatrix}. \text{ Then } \operatorname{rank}(R) = n. \]
Given a first order system

\[H(s) = C(sE - A)^{-1}B, \quad \text{with } E \in \mathbb{R}^{n \times n} \text{ invertible}. \]

Reachability characterization \([\text{Anderson/Antoulas '90}]\)

If \((E, A, B)\) is \(\mathbb{R}^n\)-reachable, \(t \geq n\), \(\sigma_i \neq \sigma_j\) for \(i \neq j\), and

\[
R = \begin{bmatrix}
(\sigma_1 E - A)^{-1}B & \cdots & (\sigma_t E - A)^{-1}B
\end{bmatrix}. \text{ Then rank } (R) = n.
\]

Observability characterization \([\text{Anderson/Antoulas '90}]\)

If \((E, A, C)\) is \(\mathbb{R}^n\)-observable, \(t \geq n\), \(\sigma_i \neq \sigma_j\) for \(i \neq j\), and

\[
O = \begin{bmatrix}
(\sigma_1 E - A)^{-T}C^T & \cdots & (\sigma_t E - A)^{-T}C^T
\end{bmatrix}. \text{ Then rank } (O) = n.
\]
Given a first order system

\[H(s) = C(sE - A)^{-1}B, \text{ with } E \in \mathbb{R}^{n \times n} \text{ invertible.} \]

Reachability characterization \[\text{[Anderson/Antoulas '90]}\]
If \((E, A, B)\) is \(\mathbb{R}^n\)-reachable, \(t \geq n\), \(\sigma_i \neq \sigma_j\) for \(i \neq j\), and

\[R = \begin{bmatrix} (\sigma_1 E - A)^{-1}B & \cdots & (\sigma_t E - A)^{-1}B \end{bmatrix}. \text{ Then } \text{rank}(R) = n. \]

Observability characterization \[\text{[Anderson/Antoulas '90]}\]
If \((E, A, C)\) is \(\mathbb{R}^n\)-observable, \(t \geq n\), \(\sigma_i \neq \sigma_j\) for \(i \neq j\), and

\[O = \begin{bmatrix} (\sigma_1 E - A)^{-T}C^T & \cdots & (\sigma_t E - A)^{-T}C^T \end{bmatrix}. \text{ Then } \text{rank}(O) = n. \]

Rank encodes minimality \[\text{[Anderson/Antoulas '90]}\]

\[\text{rank} \left(O^T E R \right) = \text{order of minimal realization} = r. \]
1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS
 An Illustrative Example

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
Reachability and Observability for SLS
Some Results

For **SLS**, we use the notion of \mathbb{R}^n **reachability and observability**. Let us consider the SLS

$$H(s) = C(s)K(s)^{-1}B(s)$$

of order n.

© benner@mpi-magdeburg.mpg.de
For \textit{SLS}, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS
\[H(s) = C(s)K(s)^{-1}B(s) \] of order n.

Reachability characterization

If $(K(s), B(s))$ is \mathbb{R}^n-reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and
\[
R = [K(\sigma_1)^{-1}B(\sigma_1) \ldots K(\sigma_t)^{-1}B(\sigma_t)],
\]
then $\text{rank}(R) = n$.

© benner@mpi-magdeburg.mpg.de
For SLS, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

$$H(s) = C(s)K(s)^{-1}B(s)$$ of order n.

Reachability characterization

If $(K(s), B(s))$ is \mathbb{R}^n-reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$R = \begin{bmatrix} K(\sigma_1)^{-1}B(\sigma_1) & \cdots & K(\sigma_t)^{-1}B(\sigma_t) \end{bmatrix},$$

then $\text{rank}(R) = n$.

Observability characterization

If $(K(s), B(s))$ is \mathbb{R}^n-observable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$O = \begin{bmatrix} K(\sigma_1)^{-T}C^T(\sigma_1) & \cdots & K(\sigma_t)^{-T}C^T(\sigma_t) \end{bmatrix},$$

then $\text{rank}(O) = n$.
For SLS, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

$$H(s) = C(s)K(s)^{-1}B(s)$$

of order n.

Reachability characterization

If $(K(s), B(s))$ is \mathbb{R}^n-reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$R = [K(\sigma_1)^{-1}B(\sigma_1) \ldots K(\sigma_t)^{-1}B(\sigma_t)]$$

then $\text{rank}(R) = n$.

Observability characterization

If $(K(s), B(s))$ is \mathbb{R}^n-observable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$O = [K(\sigma_1)^{-T}C^T(\sigma_1) \ldots K(\sigma_t)^{-T}C^T(\sigma_t)]$$

then $\text{rank}(O) = n$.

Rank encodes minimality

$$\text{rank} \left(O^T ER \right) = \text{order of the SLS } "\text{minimal}" \text{ realization} = r.$$
Let's go back to the time-delay example

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \]
with

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \]

\[B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}. \]
Let's go back to the time-delay example

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \]

with

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \]

\[B^T = [1 \ 0 \ 0] \quad \text{and} \quad C = [1 \ 1 \ 0]. \]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5], \)

\[R = [K(\sigma_1)^{-1}B \ldots K(\sigma_5)^{-1}B], \quad O = [K(\sigma_1)^{-T}C^T \ldots K(\sigma_5)^{-T}C^T]. \]
Let's go back to the **time-delay example**

\[
H(s) = C(sI - A_1 - A_2e^{-s})^{-1}B, \quad \text{with} \quad A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, B^T = [1 \ 0 \ 0] \quad \text{and} \quad C = [1 \ 1 \ 0].
\]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5] \),

\[
R = \begin{bmatrix} K(\sigma_1)^{-1}B & \ldots & K(\sigma_5)^{-1}B \end{bmatrix}, \quad O = \begin{bmatrix} K(\sigma_1)^{-T}C^T & \ldots & K(\sigma_5)^{-T}C^T \end{bmatrix}.
\]

Hence, we see that

- \(\text{rank} (R) = \text{rank} (O) = 2. \quad (\text{nonreachable nonobservable}) \)
Let's go back to the time-delay example

\[H(s) = C(sI - A_1 - A_2e^{-s})^{-1}B, \]

with

\[
A_1 = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

\[B^T = [1 \ 0 \ 0] \quad \text{and} \quad C = [1 \ 1 \ 0]. \]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5], \)

\[
R = \begin{bmatrix}
K(\sigma_1)^{-1}B \\
\vdots \\
K(\sigma_5)^{-1}B
\end{bmatrix}, \\
O = \begin{bmatrix}
K(\sigma_1)^{-T}C^T \\
\vdots \\
K(\sigma_5)^{-T}C^T
\end{bmatrix}.
\]

Hence, we see that

- \(\text{rank } (R) = \text{rank } (O) = 2. \) (nonreachable, nonobservable)
- \(\text{rank } (O^T R) = 2. \) (minimal realization order)
Let's go back to the time-delay example

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \]

with

\[
\begin{align*}
A_1 &= \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}, \\
A_2 &= \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \\
B^T &= [1 \ 0 \ 0] \quad \text{and} \quad C = [1 \ 1 \ 0].
\end{align*}
\]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5] \),

\[R = [K(\sigma_1)^{-1}B \ldots K(\sigma_5)^{-1}B], \]
\[O = [K(\sigma_1)^{-T}C^T \ldots K(\sigma_5)^{-T}C^T]. \]

Hence, we see that

- \(\text{rank} \ (R) = \text{rank} \ (O) = 2. \) (nonreachable, nonobservable)
- \(\text{rank} \ (O^T R) = 2. \) (minimal realization order)
Let's go back to the time-delay example

\[H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B, \]

with

\[A_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \]

and

\[C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}. \]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5] \),

\[R = \begin{bmatrix} K(\sigma_1)^{-1}B \\ \vdots \\ K(\sigma_5)^{-1}B \end{bmatrix}, \quad O = \begin{bmatrix} K(\sigma_1)^{-T}C^T \\ \vdots \\ K(\sigma_5)^{-T}C^T \end{bmatrix}. \]

Hence, we see that

- \(\text{rank} (R) = \text{rank} (O) = 2 \). (nonreachable, nonobservable)
- \(\text{rank} (O^T R) = 2 \). (minimal realization order)

Then,

\[[Y, \Sigma, X] = \text{svd}(O^T R). \]

So, we get the projection matrices

\[V = RX(:, 1 : 2) \quad \text{and} \quad W = OY(:, 1 : 2). \]
Let’s go back to the time-delay example

\[
H(s) = C(sI - A_1 - A_2 e^{-s})^{-1}B,
\]

with

\[
A_1 = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix},
A_2 = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix},
B^T = \begin{bmatrix}
1 & 0 & 0
\end{bmatrix}
\text{ and } C = \begin{bmatrix}
1 & 1 & 0
\end{bmatrix}.
\]

Let us construct, for \(\sigma_i = [1, 2, 3, 4, 5]\),

\[
R = \begin{bmatrix}
K(\sigma_1)^{-1}B & \ldots & K(\sigma_5)^{-1}B
\end{bmatrix},
\]
\[
O = \begin{bmatrix}
K(\sigma_1)^{-T}C^T & \ldots & K(\sigma_5)^{-T}C^T
\end{bmatrix}.
\]

Hence, we see that

- \(\text{rank } (R) = \text{rank } (O) = 2\). (nonreachable nonobservable)
- \(\text{rank } (O^T R) = 2\). (minimal realization order)

Then,

\[
[Y, \Sigma, X] = \text{svd}(O^T R).
\]

So, we get the projection matrices

\[
V = RX(:, 1:2) \text{ and } W = OY(:, 1:2).
\]

The \(\hat{H}\) obtained using \(V\) and \(W\) satisfies

\[
H(s) = \hat{H}(s), \forall s.
\]
1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction
 The Basic Approach
 Numerical Implementation
 The Algorithm

5. Numerical Results

6. Outlook and Conclusions
Figure represents the singular values of $O^T ER$ for a large-scale time-delay example.
Figure represents the singular values of $O^T ER$ for a large-scale time-delay example.

For large-scale systems, often low-rank phenomena can be observed.
- Figure represents the singular values of $O^T ER$ for a large-scale time-delay example.
- For large-scale systems, often low-rank phenomena can be observed.
- Numerical rank of $O^T ER$ generally small compared to n.
- Figure represents the singular values of $O^T ER$ for a large-scale time-delay example.
- For large-scale systems, often low-rank phenomena can be observed.
- Numerical rank of $O^T ER$ generally small compared to n.
- We can cut off states that are related to very small singular value of $O^T ER$.
To compute R (analogously for O),

- we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \ldots, t\}.$$
To compute \mathbf{R} (analogously for \mathbf{O}),

- we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \ldots, t\}.$$

- Hence, if $\mathbf{R} := [R_1, \ldots, R_t]$, it solves

$$\text{ERS} - \sum_{i=1}^{\ell_\alpha} A_i \mathbf{R} \mathbf{M}_i = \sum_{i=1}^m \mathbf{B}_i \mathbf{b}_i,$$

where

$$\mathbf{M}_i = \text{diag} (\alpha_i(\sigma_1), \ldots, \alpha_i(\sigma_t)),$$

$$\mathbf{b}_i = [\beta_i(\sigma_1), \ldots, \beta_i(\sigma_t)],$$

$$\mathbf{S} = \text{diag} (\sigma_1, \ldots, \sigma_t).$$
To compute \mathbf{R} (analogously for \mathbf{O}),

- we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \ldots, t\}.$$

- Hence, if $\mathbf{R} := [R_1, \ldots, R_t]$, it solves

$$\mathbf{ERS} - \sum_{i=1}^{\ell_\alpha} \mathbf{A}_i \mathbf{R} \mathbf{M}_i = \sum_{i=1}^{m} \mathbf{B}_i \mathbf{b}_i,$$

where

$$\mathbf{M}_i = \text{diag}(\alpha_i(\sigma_1), \ldots, \alpha_i(\sigma_t)),$$

$$\mathbf{b}_i = [\beta_i(\sigma_1), \ldots, \beta_i(\sigma_t)],$$

$$\mathbf{S} = \text{diag}(\sigma_1, \ldots, \sigma_t).$$

- This is a generalized Sylvester equation.
To compute R (analogously for O),

- we set

$$R_i := K(\sigma_i)^{-1} B(\sigma_i), \quad i \in \{1, \ldots, t\}.$$

- Hence, if $R := [R_1, \ldots, R_t]$, it solves

$$ERS - \sum_{i=1}^{\ell_\alpha} A_i R M_i = \sum_{i=1}^{m} B_i b_i,$$

where

$$M_i = \text{diag}(\alpha_i(\sigma_1), \ldots, \alpha_i(\sigma_t))$$
$$b_i = [\beta_i(\sigma_1), \ldots, \beta_i(\sigma_t)],$$
$$S = \text{diag}(\sigma_1, \ldots, \sigma_t).$$

- This is a generalized Sylvester equation.

- We use the truncated low-rank methods for generalized Sylvester equations from [Kressner/Sirkovic '15].
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
2. Solve the generalized Sylvester equations for R (and O) using a low-rank method.
3. Determine the SVD $[Y, \Sigma, X] = \text{svd}(O^T ER)$.
4. Construct the projection matrices $V = RX(:,1:r)$ and $W = OY(:,1:r)$.

Output: Reduced-order model is given by $\hat{\mathcal{K}}(s) = W^T \mathcal{K}(s) V$, $\hat{\mathcal{B}}(s) = W^T \mathcal{B}(s)$ and $\hat{\mathcal{C}}(s) = \mathcal{C}(s) V$.
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $K(s), B(s), C(s)$ and reduced order r.

1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.

2. Solve the generalized Sylvester equations for R (and O) using a low-rank method.

3. Determine the SVD $[Y, \Sigma, X] = \text{svd}(O^T ER)$.

4. Construct the projection matrices $V = RX(:,1:r)$ and $W = OY(:,1:r)$.

Output: Reduced-order model is given by $\hat{K}(s) = W^T K(s) V$, $\hat{B}(s) = W^T B(s)$ and $\hat{C}(s) = C(s) V$.

© benner@mpi-magdeburg.mpg.de
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
2. Solve the generalized Sylvester equations for \mathbf{R} (and \mathbf{O}) using a low-rank method.

Output: Reduced-order model is given by $\hat{\mathcal{K}}(s) = \mathbf{W}^T \mathcal{K}(s) \mathbf{V}$, $\hat{\mathcal{B}}(s) = \mathbf{W}^T \mathcal{B}(s)$, and $\hat{\mathcal{C}}(s) = \mathcal{C}(s) \mathbf{V}$.
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $K(s)$, $B(s)$, $C(s)$ and reduced order r.
1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
2. Solve the generalized Sylvester equations for R (and O) using a low-rank method.
3. Determine the SVD

$$[Y, \Sigma, X] = \text{svd}(O^T ER).$$
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $\mathcal{K}(s), \mathcal{B}(s), \mathcal{C}(s)$ and reduced order r.

1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
2. Solve the generalized Sylvester equations for R (and O) using a low-rank method.
3. Determine the SVD
 \[[Y, \Sigma, X] = \text{svd}(O^T E R). \]

4. Construct the projection matrices
 \[V = RX(:, 1 : r) \quad \text{and} \quad W = OY(:, 1 : r). \]
Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS $\mathcal{K}(s), \mathcal{B}(s), \mathcal{C}(s)$ and reduced order r.
1. Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
2. Solve the generalized Sylvester equations for R (and O) using a low-rank method.
3. Determine the SVD
 $$[Y, \Sigma, X] = \text{svd}(O^T ER).$$
4. Construct the projection matrices
 $$V = RX(:, 1: r) \quad \text{and} \quad W = OY(:, 1: r).$$

Output: Reduced-order model is given by
 $$\hat{\mathcal{K}}(s) = W^T \mathcal{K}(s) V, \quad \hat{\mathcal{B}}(s) = W^T \mathcal{B}(s) \quad \text{and} \quad \hat{\mathcal{C}}(s) = \mathcal{C}(s) V.$$
1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results
 A Time-delay System
 Second-order System
 Parametric Systems
 Fitz-Hugh Nagumo Model

6. Outlook and Conclusions
Let us consider the time delay system

\[
\dot{x}(t) = Ax(t) + A_\tau x(t - \tau) + Bu(t),
\]
\[
y(t) = Cx(t).
\]

- Heated rod cooled using delayed feedback from [Breda/Maset/Vermiglio '09].

- Full order model \(n = 120 \) and \(\tau = 1 \).

- ROM obtained used SPNMR method (100 log. dist. points in \([1e^{-1}, 1e^3]i\)) and Structured Balanced Truncation [Breiten '16].

- Reduced order \(r = 4 \).
Let us consider the time delay system

\[\dot{x}(t) = Ax(t) + A_\tau x(t - \tau) + Bu(t), \]
\[y(t) = Cx(t). \]

- Heated rod cooled using delayed feedback from \[\text{Breda/Maset/Vermiglio '09}.\]
- Full order model \(n = 120 \) and \(\tau = 1 \).
- ROM obtained used SPNMR method (100 log. dist. points in \([1e^{-1}, 1e^3]i\)) and Structured Balanced Truncation \[\text{Breiten '16}.\]
- Reduced order \(r = 4 \).
Let us consider the time delay system

\[\dot{x}(t) = Ax(t) + A_\tau x(t - \tau) + Bu(t), \]
\[y(t) = Cx(t). \]

- Heated rod cooled using delayed feedback from [Breda/Maset/Vermiglio '09].
- Full order model \(n = 120 \) and \(\tau = 1 \).
- ROM obtained using SPNMR method (100 log. dist. points in \([1e^{-1}, 1e^3]\)) and Structured Balanced Truncation [Breiten '16].
- Reduced order \(r = 4 \).
Let us consider the time delay system

\[\dot{x}(t) = Ax(t) + A_\tau x(t - \tau) + Bu(t), \]
\[y(t) = Cx(t). \]

- Heated rod cooled using delayed feedback from [Breda/Maset/Vermiglio ’09].
- Full order model \(n = 120 \) and \(\tau = 1 \).
- ROM obtained used SPNMR method (100 log. dist. points in \([10^{-1}, 10^3]i\)) and Structured Balanced Truncation [Breiten ’16].
- Reduced order \(r = 12 \).

![Graph showing absolute error](image)
Let us consider the second order system

\[
M \ddot{x}(t) + D \dot{x}(t) + K x(t) = B u(t) \\
y(t) = C x(t).
\]

- Damped vibrational system.
- Full order model with \(n = 301 \).
- ROM obtained using SPNMR method (500 log. dist. points in \([1e^{-3}, 1]\)) and Structured Balanced Truncation [Breiten '16].
- Reduced order \(r = 50 \).
Let us consider the second order system

\[M \ddot{x}(t) + D \dot{x}(t) + K x(t) = B u(t) \]
\[y(t) = C x(t). \]

- Damped vibrational system.

- Full order model with \(n = 301 \).
- ROM obtained used SPNMR method (500 log. dist. points in \([1e^{-3}, 1]i\) and Structured Balanced Truncation [Breiten '16].
- Reduced order \(r = 50 \).
Let us consider the second order system

\[M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = Bu(t) \]
\[y(t) = Cx(t). \]

- Damped vibrational system.
- Full order model with \(n = 301 \).
- ROM obtained used SPNMR method (500 log. dist. points in \([1e^{-3}, 1]i\)) and Structured Balanced Truncation \([\text{Breiten '16}]\).
- Reduced order \(r = 50 \).
The results presented in this talk can also be generalized to parametric SLS, i.e.,

\[H(s, p) = C(s, p)K(s, p)^{-1}B(s, p). \]
The results presented in this talk can also be generalized to parametric SLS, i.e.,

\[H(s, p) = C(s, p)K(s, p)^{-1}B(s, p). \]

Consider \(H(s, p) = C(sI - A_1 - pA_2)^{-1}B \), where

\[
A_1 = \begin{bmatrix}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \quad \text{and} \quad C^T = \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]
The results presented in this talk can also be generalized to parametric SLS, i.e.,

$$\mathbf{H}(s, p) = \mathbf{C}(s, p)\mathbf{K}(s, p)^{-1}\mathbf{B}(s, p).$$

Consider

$$\mathbf{H}(s, p) = \mathbf{C} (s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2)^{-1} \mathbf{B},$$

where

$$\mathbf{A}_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{C}^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

For $t = 20$ points (σ_i, p_i), let

$$\mathbf{R} = [K(\sigma_1, p_1)^{-1}\mathbf{B} \ldots K(\sigma_t, p_t)^{-1}\mathbf{B}],$$

$$\mathbf{O} = [K(\sigma_1, p_1)^{-T}\mathbf{C}^T \ldots K(\sigma_t, p_t)^{-T}\mathbf{C}^T].$$
The results presented in this talk can also be generalized to parametric SLS, i.e.,

\[H(s, p) = C(s, p)K(s, p)^{-1}B(s, p). \]

Consider \(H(s, p) = C(sI - A_1 - pA_2)^{-1}B \), where

\[
A_1 = \begin{bmatrix}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{bmatrix}, \quad
A_2 = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \quad
B = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \quad \text{and } C^T = \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

For \(t = 20 \) points \((\sigma_i, p_i)\), let

\[
R = \begin{bmatrix}
K(\sigma_1, p_1)^{-1}B & \ldots & K(\sigma_t, p_t)^{-1}B
\end{bmatrix}, \\
O = \begin{bmatrix}
K(\sigma_1, p_1)^{-T}C^T & \ldots & K(\sigma_t, p_t)^{-T}C^T
\end{bmatrix}.
\]

Build \(O^T R \) and check rank (=2).
The results presented in this talk can also be generalized to parametric SLS, i.e.,

\[H(s, p) = C(s, p)K(s, p)^{-1}B(s, p). \]

Consider \(H(s, p) = C(sI - A_1 - pA_2)^{-1}B \), where

\[
A_1 = \begin{bmatrix}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{bmatrix},
A_2 = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix},
B = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix},
C^T = \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}.
\]

For \(t = 20 \) points \((\sigma_i, p_i)\), let

\[
R = \begin{bmatrix}
K(\sigma_1, p_1)^{-1}B & \ldots & K(\sigma_t, p_t)^{-1}B
\end{bmatrix},
O = \begin{bmatrix}
K(\sigma_1, p_1)^{-T}C^T & \ldots & K(\sigma_t, p_t)^{-T}C^T
\end{bmatrix}.
\]

Build \(O^T R \) and check rank (=2).

Compute projectors \(V \) and \(W \) and \(\hat{H}(s, p) \).

Then, \(H(s, p) = \hat{H}(s, p) \).
FOM example [MORwiki]1 of order 1006 and $p \in [10, 100]$ of the form
\[
\dot{x}(t) = (A_1 + pA_2)x(t) + Bu(t)
\]
\[
y(t) = Cx(t)
\]

1500 random points $(s, p) \in [1e0, 1e4] \times [10, 100]$. Reduced order $r = 15$.

1morwiki mpi-magdeburg mpg de/
FOM example [MORwiki]¹ of order 1006 and \(p \in [10, 100] \) of the form

\[
\dot{x}(t) = (A_1 + pA_2)x(t) + Bu(t) \\
y(t) = Cx(t)
\]

- 1500 random points \((s, p) \in [\text{1}e0, \text{1}e4]i \times [10, 100]\). Reduced order \(r = 15 \).
- \(p = 10 \)

¹morwiki.mpi-magdeburg.mpg.de/
Parametric Systems
Example 2: Parametric FOM

- FOM example [MORWIKI]1 of order 1006 and $p \in [10, 100]$ of the form
 \[
 \dot{x}(t) = (A_1 + pA_2)x(t) + Bu(t) \\
 y(t) = Cx(t)
 \]
- 1500 random points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order $r = 15$.
- $p = 55$

1morwiki.mpi-magdeburg.mpg.de/
FOM example [MORwiki]\(^1\) of order 1006 and \(p \in [10, 100] \) of the form
\[
\dot{x}(t) = (A_1 + pA_2)x(t) + Bu(t) \\
y(t) = Cx(t)
\]
1500 random points \((s, p) \in [1e0, 1e4]i \times [10, 100]\). Reduced order \(r = 15 \).

\(p = 100 \)

\(^1\)morwiki.mpi-magdeburg.mpg.de/
Consider again the FOM model \([\text{MORwiki}]^2\) of order 1006 and \(p \in [10, 100]\) with an artificial delay \((\tau = 3s)\)

\[
\dot{x}(t) = A_1 x(t) + p A_2 x(t - \tau) +Bu(t)
\]

\[
y(t) = Cx(t)
\]

1500 randomly chosen points \((s, p) \in [1e0, 1e4]i \times [10, 100]\). Reduced order \(r = 15\).
Consider again the FOM model \([\text{MORwiki}]^2\) of order 1006 and \(p \in [10, 100]\) with an artificial delay \((\tau = 3s)\)

\[
\dot{x}(t) = A_1 x(t) + pA_2 x(t - \tau) + Bu(t)
\]

\[
y(t) = Cx(t)
\]

- 1500 randomly chosen points \((s, p) \in [1e0, 1e4]i \times [10, 100]\). Reduced order \(r = 15\).

- For \(p = 10\), the plots show the magnitude and relative error comparison between the full-order model (FOM) and the reduced-order model (ROM) for different frequencies.
Consider again the FOM model of order 1006 and \(p \in [10, 100] \) with an artificial delay \((\tau = 3s) \)

\[
\dot{x}(t) = A_1 x(t) + pA_2 x(t - \tau) + Bu(t)
\]

\[
y(t) = Cx(t)
\]

1500 randomly chosen points \((s, p) \in [1e0, 1e4] i \times [10, 100]\). Reduced order \(r = 15 \).

\(p = 55 \)

\(^2\text{morwiki.mpi-magdeburg.mpg.de/}\)
Consider again the FOM model \([\text{MORwiki}]^2\) of order 1006 and \(p \in [10, 100]\) with an artificial delay \((\tau = 3s)\)

\[
\dot{x}(t) = A_1 x(t) + pA_2 x(t - \tau) + Bu(t)
\]

\[
y(t) = Cx(t)
\]

1500 randomly chosen points \((s, p) \in [1e0, 1e4]i \times [10, 100]\). Reduced order \(r = 15\).

\(p = 100\)

\[\text{morwiki.mpi-magdeburg.mpg.de/}\]
Fitz-Hugh Nagumo model: Governing coupled equation

\[\epsilon v_t = \epsilon^2 v_{xx} + v(v - 0.1)(1 - v) - w + u, \]
\[w_t = hv - \gamma w + u \]
on \[[0, T] \times [0, L] \]

with initial and boundary conditions

\[v(x, 0) = 0, \quad w(x, 0) = 0, \quad x \in (0, L), \quad v_x(0, t) = i_0(t), \quad v_x(L, t) = 0, \quad t \geq 0. \]

- To employ the interpolation-based algorithm, we choose random 100 interpolation points in a logarithmic way between \([10^{-2}, 10^2]\) and set \(\sigma_i = \mu_i, i \in \{1, \ldots, 100\}\).
Fitz-Hugh Nagumo model: Governing coupled equation

\[
\epsilon v_t = \epsilon^2 v_{xx} + v(v - 0.1)(1 - v) - w + u, \quad \text{on} \quad [0, T] \times [0, L]
\]

\[
w_t = hw - \gamma w + u
\]

Decay of singular values of Loewner pencil

\[
\text{svd}\left([L, L_s]\right)
\]
Fitz-Hugh Nagumo model: Governing coupled equation

\[\epsilon v_t = \epsilon^2 v_{xx} + v(v - 0.1)(1 - v) - w + u, \]
\[w_t = hv - \gamma w + u \]
on \[[0, T] \times [0, L] \]

Construction of reduced systems

- Ori. sys. \((n = 300)\)
- Red. sys. \((r = 15)\)
- Red. sys. \((r = 6)\)
1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
Contribution of this talk

- Minimal realization by projection of SLS.
- Model reduction technique inspired by numerical rank of matrix $O^T E R$.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.
Outlook and Conclusions

Contribution of this talk

- Minimal realization by projection of SLS.
- Model reduction technique inspired by numerical rank of matrix $O^T ER$.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.

Open questions and future work

- Stability preservation and error bounds.
- Relation to pure Loewner-style approach [Schulze/Unger/Beattie/Gugercin ’18]?
- Extension to nonlinear systems, first results for polynomial systems in [Benner/Goyal ’19, arXiv:1904.11891].