SYSTEM-THEORETIC METHODS
FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS:
SIMULATION, CONTROL, AND INVERSE PROBLEMS

Peter Benner
Professur Mathematik in Industrie und Technik
Fakultät für Mathematik
Technische Universität Chemnitz

MATHMOD 2009
Vienna, February 11–13, 2009
Overview

1 Introduction
 - Model Reduction
 - Application Areas
 - Goals

2 System-Theoretic Model Reduction
 - Balancing Basics
 - Balanced Truncation and Relatives
 - Solving Large-Scale Matrix Equations

3 Numerical Examples
 - Simulation
 - Control

4 Conclusions and Outlook
Model Reduction for Dynamical Systems

Dynamical Systems

\[\Sigma : \begin{cases}
E \dot{x}(t) &= f(t, x(t), u(t)), \quad x(t_0) = x_0, \quad (a) \\
y(t) &= g(t, x(t), u(t)) & (b)
\end{cases} \]

with

- (generalized) states \(x(t) \in \mathbb{R}^n \) \((E \in \mathbb{R}^{n \times n})\),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \), (b) is called output equation.

If \(E \) singular \(\Rightarrow \) (a) is system of differential-algebraic equations (DAEs)
otherwise \(\Rightarrow \) (a) is system of ordinary differential equations (ODEs)
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} E \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases} \]

- states \(x(t) \in \mathbb{R}^n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \).

Reduced-Order System

\[\hat{\Sigma} : \begin{cases} \hat{E} \dot{\hat{x}}(t) = \hat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t) = \hat{g}(t, \hat{x}(t), u(t)). \end{cases} \]

- states \(\hat{x}(t) \in \mathbb{R}^r, \ r \ll n \)
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(\hat{y}(t) \in \mathbb{R}^p \).

Goal:

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \text{ for all admissible input signals.} \]
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} E\dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases} \]

- states \(x(t) \in \mathbb{R}^n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \).

Reduced-Order System

\[\hat{\Sigma} : \begin{cases} \hat{E}\dot{\hat{x}}(t) = \hat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t) = \hat{g}(t, \hat{x}(t), u(t)). \end{cases} \]

- states \(\hat{x}(t) \in \mathbb{R}^r, \quad r \ll n \)
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(\hat{y}(t) \in \mathbb{R}^p \).

Goal:

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \text{ for all admissible input signals.} \]
Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

\[
\begin{align*}
E \dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t),
\end{align*}
\]

\(A, E \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.\)

Laplace Transformation / Frequency Domain

Application of Laplace transformation (\(x(t) \mapsto x(s), \quad \dot{x}(t) \mapsto sx(s)\)) to linear system with \(x(0) = 0\):

\[
sEx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),
\]

yields I/O-relation in frequency domain:

\[
y(s) = \left(C(sE - A)^{-1}B + D \right) u(s) =: G(s)
\]

\(G\) is the transfer function of \(\Sigma\).
Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

\[
\begin{align*}
E \dot{x}(t) &= Ax(t) + Bu(t), \quad A, E \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t) &= Cx(t) + Du(t), \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\end{align*}
\]

Laplace Transformation / Frequency Domain

Application of Laplace transformation \((x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))\) to linear system with \(x(0) = 0\):

\[
sEx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),
\]

yields I/O-relation in frequency domain:

\[
y(s) = \left(C(sE - A)^{-1}B + D \right)u(s) =: G(s)
\]

\(G\) is the transfer function of \(\Sigma\).
Model Reduction for Linear Systems

Problem

Approximate the dynamical system

\[
\begin{align*}
E \dot{x} &= Ax + Bu, & A, E &\in \mathbb{R}^{n \times n}, & B &\in \mathbb{R}^{n \times m}, \\
y &= Cx + Du, & C &\in \mathbb{R}^{p \times n}, & D &\in \mathbb{R}^{p \times m},
\end{align*}
\]

by reduced-order system

\[
\begin{align*}
\hat{E} \dot{\hat{x}} &= \hat{A}\hat{x} + \hat{B}u, & \hat{A}, \hat{E} &\in \mathbb{R}^{r \times r}, & \hat{B} &\in \mathbb{R}^{r \times m}, \\
\hat{y} &= \hat{C}\hat{x} + \hat{D}u, & \hat{C} &\in \mathbb{R}^{p \times r}, & \hat{D} &\in \mathbb{R}^{p \times m},
\end{align*}
\]

of order \(r \ll n \), such that

\[
\|y - \hat{y}\| = \|G_u - \hat{G}u\| \leq \|G - \hat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.
\]

\[\implies \text{Approximation problem: } \min_{\text{order } \hat{G} \leq r} \|G - \hat{G}\|\]
Problem

Approximate the dynamical system

\[
\begin{align*}
E \dot{x} &= Ax + Bu, & A, E \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y &= Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m},
\end{align*}
\]

by reduced-order system

\[
\begin{align*}
\hat{E} \dot{\hat{x}} &= \hat{A}\hat{x} + \hat{B}u, & \hat{A}, \hat{E} \in \mathbb{R}^{r \times r}, & \hat{B} \in \mathbb{R}^{r \times m}, \\
\hat{y} &= \hat{C}\hat{x} + \hat{D}u, & \hat{C} \in \mathbb{R}^{p \times r}, & \hat{D} \in \mathbb{R}^{p \times m},
\end{align*}
\]

of order \(r \ll n \), such that

\[
\|y - \hat{y}\| = \|Gu - \hat{G}u\| \leq \|G - \hat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.
\]

\[\implies \text{Approximation problem: } \min_{\text{order } (\hat{G}) \leq r} \|G - \hat{G}\|.\]
Application Areas
General assumptions

Here:

- **linear** systems,
- $n \gg m, p$,
- n so large, that $A(E)$ cannot be stored in main memory (RAM) as $n \times n$ array: $n > 5000$, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- $A(E)$ sparse or data-sparse, i.e., $A(E)$ can be stored in $O(n)$ or $O(n \log n)$ memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).
Application Areas

General assumptions

Here:

- **linear systems**,

- $n \gg m, p$,

- n so large, that $A(E)$ cannot be stored in main memory (RAM) as $n \times n$ array: $n > 5000$, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, …

- $A(E)$ sparse or data-sparse, i.e., $A(E)$ can be stored in $O(n)$ or $O(n \log n)$ memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).
Here:

- **linear** systems,
- \(n \gg m, p, \)
- \(n \) so large, that \(A(E) \) cannot be stored in main memory (RAM) as \(n \times n \) array: \(n > 5000 \), say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, \ldots
- \(A(E) \) sparse or data-sparse, i.e., \(A(E) \) can be stored in \(O(n) \) or \(O(n \log n) \) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).
Here:

- **linear** systems,
- \(n \gg m, p, \)
- \(n \) so large, that \(A(E) \) cannot be stored in main memory (RAM) as \(n \times n \) array: \(n > 5000 \), say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- \(A(E) \) sparse or data-sparse, i.e., \(A(E) \) can be stored in \(O(n) \) or \(O(n \log n) \) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).
Application Areas
Simulation

Time-domain simulation

Evaluation of variation-of-constants formula

\[y(t) = C \exp(At) \left(x^0 + \int_0^t \exp(-A\tau)Bu(\tau)d\tau \right), \]

usually too expensive \(\rightsquigarrow\) numerical simulation, e.g., using backwards Euler

\[y_h(t_{k+1}) = C(E - h_kA)^{-1}(Ex_h(t_k) + h_kBu(t_{k+1})) + Du(t_{k+1}), \]

Bottleneck: solution of \((E - h_kA)z = b\), computation time can be significantly reduced by using reduced-order model:

\[\hat{y}_h(t_{k+1}) = \hat{C}(\hat{E} - h_k\hat{A})^{-1}(\hat{E}x_h(t_k) + h_k\hat{B}u(t_{k+1})) + \hat{D}u(t_{k+1}). \]
Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots, requires evaluation of transfer function

\[G(\omega_k) = C(\omega_k E - A)^{-1}B + D, \quad \omega_k \geq 0, \ k = 1, \ldots, N_f. \]

Bottleneck: solution of \((\omega_k E - A)z = b\).

Computation time can be significantly reduced by using reduced-order model:

\[\hat{G}(\omega_k) = \hat{C}(\omega_k \hat{E} - \hat{A})^{-1}\hat{B} + \hat{D}. \]
Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots, requires evaluation of transfer function

\[G(\omega_k) = C(\omega_k E - A)^{-1}B + D, \quad \omega_k \geq 0, \ k = 1, \ldots, N_f. \]

Bottleneck: solution of \((\omega_k E - A)z = b\).

Computation time can be significantly reduced by using reduced-order model:

\[\hat{G}(\omega_k) = \hat{C}(\omega_k \hat{E} - \hat{A})^{-1}\hat{B} + \hat{D}. \]

But: the cost for solving the linear systems in time/frequency domain simulation may not benefit from smaller order, if efficient sparse direct solver for full-size sparse system matrices is available.
An easy improvement

Significant reduction can be achieved by transforming (\hat{A}, \hat{E}) to Hessenberg-triangular form using QZ algorithm, i.e., compute orthogonal Q, Z such that

$$Q(\lambda \hat{E} - \hat{A})Z = \lambda \begin{bmatrix} \vdots \end{bmatrix} - \begin{bmatrix} \vdots \end{bmatrix} = \begin{bmatrix} \vdots \end{bmatrix}.$$

New reduced-order system: $(Q\hat{E}Z, Q\hat{A}Z, Q\hat{B}, \hat{C}Z)$, linear systems of equations

$$(j\omega \hat{E} - \hat{A})x = b,$$

$$(\hat{E} - h_k \hat{A})x_{k+1} = \hat{E}x_k + \ldots,$$

have Hessenberg form and can thus be solved using $r-1$ Givens rotations only! (Needs Hessenberg solver inside simulator.)

For symmetric systems, further reduction can be achieved.
Application Areas
(Optimal) Control

Feedback Controllers
A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG-/H$_2$-/H$_\infty$-) control design: $N \geq n$.

Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

\implies reduce order of plant (n) and/or controller (N).
Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order \(N \), where

- input = output of plant,
- output = input of plant.

Modern (LQG- / \(\mathcal{H}_2 \)- / \(\mathcal{H}_\infty \)-) control design: \(N \geq n \).

Practical controllers require small \(N \) (\(N \sim 10 \), say) due to

- real-time constraints,
- increasing fragility for larger \(N \).

\[\begin{align*}
x' &= A x + B u \\
y &= C x + D u \\
v' &= E v + F y \\
u &= H v + K y
\end{align*} \]
Application Areas
(Optimal) Control

Feedback Controllers
A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG-/H$_2$/H$_\infty$-) control design: $N \geq n$.

Practical controllers require small N ($N \sim 10$, say) due to
- real-time constraints,
- increasing fragility for larger N.

\implies reduce order of plant (n) and/or controller (N).
System inversion

Assume $m = p$, $D \in \mathbb{R}^{m \times m}$ invertible (generalizations possible!), then

$$G^{-1}(s) = -D^{-1} C(sE - (A - BD^{-1}C))^{-1} BD^{-1} + D^{-1}.$$

Some applications like

- inverse-based control,
- identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given $Y(s)$, the Laplace transform of $y(t)$, compute $U(s) = G^{-1}(s)Y(s)$.

Application Areas
Inverse Problems

System inversion

Assume $m = p$, $D \in \mathbb{R}^{m \times m}$ invertible (generalizations possible!), then
\[
G^{-1}(s) = -D^{-1} C (sE - (A - BD^{-1} C))^{-1} BD^{-1} + D^{-1}.
\]

Some applications like

– inverse-based control,
– identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given $Y(s)$, the Laplace transform of $y(t)$, compute $U(s) = G^{-1}(s) Y(s)$.

Goal: reduced-order transfer function $\hat{G}(s)$ such that
\[
\hat{U}(s) = \hat{G}^{-1}(s) Y(s)
\]

has small error
\[
\| U - \hat{U} \| = \| G^{-1} Y - \hat{G}^{-1} Y \| \leq \| G^{-1} - \hat{G}^{-1} \| \| Y \| \leq \text{tolerance} \cdot \| Y \|.
\]
System inversion

Assume \(m = p \), \(D \in \mathbb{R}^{m \times m} \) invertible (generalizations possible!), then

\[
G^{-1}(s) = -D^{-1} C (sE - (A - BD^{-1}C))^{-1} BD^{-1} + D^{-1}.
\]

Some applications like

- inverse-based control,
- identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given \(Y(s) \), the Laplace transform of \(y(t) \), compute \(U(s) = G^{-1}(s)Y(s) \).

Goal: reduced-order transfer function \(\hat{G}(s) \) such that

\[
\hat{U}(s) = \hat{G}^{-1}(s)Y(s)
\]

has small error

\[
\| U - \hat{U} \| = \| G^{-1}Y - \hat{G}^{-1}Y \| \leq \| G^{-1} - \hat{G}^{-1} \| \| Y \| \leq \text{tolerance} \cdot \| Y \|.
\]
Introduction

Goals

- **Automatic generation of compact models.**
- Satisfy desired error tolerance for all admissible input signals, i.e., want
 \[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

 \[\Rightarrow \text{Need computable error bound/estimate!} \]
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy"),

\textit{All this can be achieved by system-theoretic methods based on balancing!}
Introduction

Goals

- Automatic generation of compact models.
- **Satisfy desired error tolerance** for all admissible input signals, i.e., want

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\implies \text{Need computable error bound/estimate!} \]

- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity (“system does not generate energy”),

All this can be achieved by system-theoretic methods based on balancing!
Introduction

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\Rightarrow \text{Need computable error bound/estimate!} \]

- Preserve physical properties:
 - stability (poles of } G \text{ in } \mathbb{C}^-),
 - minimum phase (zeroes of } G \text{ in } \mathbb{C}^-),
 - passivity (“system does not generate energy”),

\[\text{All this can be achieved by system-theoretic methods based on balancing!} \]
Introduction

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\implies \text{Need computable error bound/estimate!} \]

- Preserve physical properties:
 - stability (poles of \(G \) in \(\mathbb{C}^- \)),
 - minimum phase (zeroes of \(G \) in \(\mathbb{C}^- \)),
 - passivity ("system does not generate energy"),

All this can be achieved by system-theoretic methods based on balancing!
Balancing Basics

\((E = I_n, \text{ for ease of notation})\)

Linear, Time-Invariant (LTI) Systems

\[
\Sigma : \begin{cases}
\dot{x}(t) &= Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t) &= Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\end{cases}
\]

\((A, B, C, D)\) is a realization of \(\Sigma\) (nonunique).
Balancing Basics
($E = I_n$ for ease of notation)

Linear, Time-Invariant (LTI) Systems

\[
\Sigma : \begin{cases}
\dot{x}(t) = Ax + Bu, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t) = Cx + Du, & C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\end{cases}
\]

(A, B, C, D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T : \mathbb{R}^n \to \mathbb{R}^n$,

\[
TPT^T = T^{-T}QT^{-1} = \text{diag}(\sigma_1, \ldots, \sigma_n), \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0.
\]

Balancing Σ w.r.t. P, Q:

\[
\Sigma \equiv (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D) \equiv \Sigma.
\]

Generalization to $P, Q \geq 0$ possible: if \hat{n} is McMillan degree of Σ, then

\[
T(PQ)T^{-1} = \text{diag}(\sigma_1, \ldots, \sigma_{\hat{n}}, 0, \ldots, 0).
\]
Balancing Basics

\((E = I_n \text{ for ease of notation})\)

Linear, Time-Invariant (LTI) Systems

\[
\Sigma : \begin{cases} \dot{x}(t) = Ax + Bu, & A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ y(t) = Cx + Du, & C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}. \end{cases}
\]

\((A, B, C, D)\) is a realization of \(\Sigma\) (nonunique).

Model Reduction Based on Balancing

Given \(P, Q \in \mathbb{R}^{n \times n}\) symmetric positive definite (spd), and a contragredient transformation \(T : \mathbb{R}^n \to \mathbb{R}^n\),

\[
TPT^T = T^{-T}QT^{-1} = \text{diag}(\sigma_1, \ldots, \sigma_n), \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0.
\]

Balancing \(\Sigma\) w.r.t. \(P, Q\):

\[
\Sigma \equiv (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D) \equiv \Sigma.
\]

Generalization to \(P, Q \succeq 0\) possible: if \(\hat{n}\) is McMillan degree of \(\Sigma\), then

\[
T(PQ)T^{-1} = \text{diag}(\sigma_1, \ldots, \sigma_{\hat{n}}, 0, \ldots, 0).
\]
Balancing Basics

(E = I_n, for ease of notation)

Basic Model Reduction Procedure

1. Given $\Sigma \equiv (A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$(A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

2. Truncation \rightsquigarrow reduced-order model:

$$(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (A_{11}, B_1, C_1, D).$$
Balancing Basics

\((E = I_n \text{ for ease of notation})\)

Basic Model Reduction Procedure

1. Given \(\Sigma \equiv (A, B, C, D)\) and balancing (w.r.t. given \(P, Q\) spd) transformation \(T \in \mathbb{R}^{n \times n}\) nonsingular, compute

\[
(A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)
\]

\[
= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}, D \right)
\]

2. Truncation \(\leadsto\) reduced-order model:

\[
(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (A_{11}, B_1, C_1, D).
\]
Balancing Basics
($E = I_n$ for ease of notation)

Implementation: SR Method

1. Compute Cholesky (square) or full-rank (maybe rectangular, “thin”) factors of P, Q

 \[P = S^T S, \quad Q = R^T R. \]

2. Compute SVD

 \[SR^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}. \]

3. Set

 \[W = R^T V_1 \Sigma_1^{-1/2}, \quad V = S^T U_1 \Sigma_1^{-1/2}. \]

4. Reduced-order model is

 \[(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (W^T A V, W^T B, CV, D) \quad (\equiv (A_{11}, B_1, C_1, D)). \]
Balancing Basics

\((E = I_n \text{ for ease of notation})\)

Implementation: SR Method

1. **Compute Cholesky (square) or full-rank (maybe rectangular, “thin”) factors of** \(P, Q\)

 \[P = S^T S, \quad Q = R^T R. \]

2. **Compute SVD**

 \[SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 & \cdot \cdot \cdot \\ \cdot \cdot \cdot & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}. \]

3. **Set**

 \[W = R^T V_1 \Sigma_1^{-1/2}, \quad V = S^T U_1 \Sigma_1^{-1/2}. \]

4. **Reduced-order model is**

 \((\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (W^T AV, W^T B, CV, D) \ (\equiv (A_{11}, B_1, C_1, D)).\)
Balancing for Simulation, Control

Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Classical Balanced Truncation (BT)

Mullis/Roberts ’76, Moore ’81

- P/Q = controllability/observability Gramian of $\Sigma \equiv (A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations
 \[AP + PA^T + BB^T = 0, \quad A^TQ + QA + C^TC = 0. \]
- $\{\sigma_1^{\text{BT}}, \ldots, \sigma_n^{\text{BT}}\}$ are the Hankel singular values (HSVs) of Σ.
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [Zhou/Salomon/Wu ’99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:
 \[\|G - \hat{G}^{\text{BT}}\|_{H_\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{\text{BT}}, \]

allows adaptive choice of r!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Classical Balanced Truncation (BT)
Mullis/Roberts ’76, Moore ’81

- \(P/Q \) = controllability/observability Gramian of \(\Sigma \equiv (A, B, C, D) \).
- For asymptotically stable systems, \(P, Q \) solve dual Lyapunov equations
 \[
 AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0.
 \]
- \(\{\sigma_1^{\text{BT}}, \ldots, \sigma_n^{\text{BT}}\} \) are the Hankel singular values (HSV) of \(\Sigma \).
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [Zhou/Salomon/Wu ’99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:
 \[
 \| G - \hat{G}^{\text{BT}} \|_{H_{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{\text{BT}},
 \]
 allows adaptive choice of \(r \)!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Classical Balanced Truncation (BT) Mullis/Roberts ’76, Moore ’81

- P/Q = controllability/observability Gramian of $\Sigma \equiv (A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations
 \[AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \]
- $\{\sigma_{1}^{\text{BT}}, \ldots, \sigma_{n}^{\text{BT}}\}$ are the Hankel singular values (HSV) of Σ.
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [Zhou/Salomon/Wu ’99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:
 \[\| G - \hat{G}^{\text{BT}} \|_{H_\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_{j}^{\text{BT}}, \]
 allows adaptive choice of r!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Classical Balanced Truncation (BT)

- $P/Q = \text{controllability/observability Gramian of } \Sigma \equiv (A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations
 \[
 AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0.
 \]
- $\{\sigma_1^{BT}, \ldots, \sigma_n^{BT}\}$ are the Hankel singular values (HSV{s}) of Σ.
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [Zhou/Salomon/Wu '99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:
 \[
 \|G - \hat{G}^{BT}\|_{H_\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{BT},
 \]
 allows adaptive choice of r!
Balancing for Simulation, Control

Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Linear-Quadratic Gaussian Balanced Truncation (LQGBT)

Jonckheere/Silverman ’83

- \(P/Q = \) controllability/observability Gramian of closed-loop system based on LQG compensator.
- \(P, Q \) solve dual algebraic Riccati equations (AREs)

 \[
 0 = AP + PA^T - PC^T CP + B^T B, \\
 0 = A^T Q + QA - QBB^T Q + C^T C.
 \]

- Applies to unstable systems!
 (Only stabilizability & detectability are required.)

- Computable error bound comes for free: if \(G = M^{-1}N \), \(\hat{G} = \hat{M}^{-1}\hat{N} \)
 are left coprime factorizations with stable factors, then

 \[
 \| [N \ M] - [\hat{N} \ \hat{M}] \|_{\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{LQG} \left(1 + (\sigma_j^{LQG})^2 \right)^{\frac{1}{2}},
 \]

 allows adaptive choice of \(r \! \).

- Yields reduced-order LQR/LQG controller for free!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT)
Jonckheere/Silverman ’83

- $P/Q = \text{controllability/observability} \text{ Gramian of closed-loop system based on LQG compensator.}$
- P, Q solve dual algebraic Riccati equations (AREs)
 \[
 0 = AP + PA^T - PC^T CP + B^T B, \\
 0 = A^T Q + QA - QBB^T Q + C^T C.
 \]
- **Applies to unstable systems!**
 (Only stabilizability & detectability are required.)
- Computable error bound comes for free: if $G = M^{-1} N$, $\hat{G} = \hat{M}^{-1} \hat{N}$ are left coprime factorizations with stable factors, then
 \[
 \| [N \ M] - [\hat{N} \ \hat{M}] \|_{H_\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{\text{LQG}} \left(1 + (\sigma_j^{\text{LQG}})^2 \right)^{\frac{1}{2}},
 \]
 allows adaptive choice of r!
- Yields reduced-order LQR/LQG controller for free!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Linear-Quadratic Gaussian Balanced Truncation (LQGBT)

Jonckheere/Silverman '83

- \(P/Q = \) controllability/observability Gramian of closed-loop system based on LQG compensator.
- \(P, Q \) solve dual algebraic Riccati equations (AREs)

\[
0 = AP + PA^T - PC^T CP + B^T B, \\
0 = A^T Q + QA - QBB^T Q + C^T C.
\]

- Applies to unstable systems!
 (Only stabilizability & detectability are required.)
- **Computable error bound** comes for free: if \(G = M^{-1}N, \hat{G} = \hat{M}^{-1}\hat{N} \) are left coprime factorizations with stable factors, then

\[
\| [N \ M] - [\hat{N} \ \hat{M}] \|_{H_\infty} \leq 2 \sum_{j=r+1}^n \sigma_j^{\text{LQG}} \left(1 + (\sigma_j^{\text{LQG}})^2\right)^{\frac{1}{2}},
\]

allows adaptive choice of \(r \! \)!

- Yields reduced-order LQR/LQG controller for free!
Balancing for Simulation, Control
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT)
Jonckheere/Silverman ’83

- $P/Q = \text{controllability/observability Gramian of closed-loop system based on LQG compensator}.$

- P, Q solve dual algebraic Riccati equations (AREs)
 \[
 0 = AP + PA^T - PC^T CP + B^T B, \\
 0 = A^T Q + QA - QBB^T Q + C^T C.
 \]

- Applies to unstable systems!
 (Only stabilizability & detectability are required.)

- Computable error bound comes for free: if $G = M^{-1}N, \hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations with stable factors, then
 \[
 \| [\begin{array}{cc} N & M \\ \hat{N} & \hat{M} \end{array}] \|_{H^\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_j^{LQG} \left(1 + (\sigma_j^{LQG})^2\right)^{\frac{1}{2}},
 \]
 allows adaptive choice of r!

- Yields reduced-order LQR/LQG controller for free!
Balancing for Simulation of Passive Systems
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Positive-Real Balanced Truncation (PRBT) Green '88

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- For $m = p$, P, Q solve dual AREs

$$
0 = \bar{A}P + P\bar{A}^T + PC^T\bar{R}^{-1}CP + B\bar{R}^{-1}B^T,
0 = \bar{A}^TQ + Q\bar{A} + QB\bar{R}^{-1}B^TQ + C^T\bar{R}^{-1}C,
$$

where $\bar{R} = D + D^T$, $\bar{A} = A - B\bar{R}^{-1}C$.
- Preserves stability, strict passivity; needs stability of \bar{A}.
- Computable error bound [Gugercin/Antoulas ’03,B. ’05]:

$$
\|G - \hat{G}^\text{PR}\|_{H_\infty} \leq 2\|R\|^2\|\hat{G}_D\|_{\infty}\|G_D\|_{\infty} \sum_{k=r+1}^{n} \sigma_k^{\text{PR}}.
$$

$(G_D(s) := G(s) + D^T, \hat{G}_D(s) := \hat{G}(s) + D^T.)$
Balancing for Simulation of Passive Systems

Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- For \(m = p, P, Q \) solve dual AREs

\[
0 = \bar{A}P + P\bar{A}^T + PC^T\bar{R}^{-1}CP + B\bar{R}^{-1}B^T, \\
0 = \bar{A}^TQ + Q\bar{A} + QB\bar{R}^{-1}B^TQ + C^T\bar{R}^{-1}C,
\]

where \(\bar{R} = D + D^T \), \(\bar{A} = A - B\bar{R}^{-1}C \).

- Preserves stability, strict passivity; needs stability of \(\bar{A} \).

- Computable error bound [Gugercin/Antoulas '03,B. '05]:

\[
\| G - \hat{G}^{PR} \|_{H_\infty} \leq 2\| R \|_2 \| \hat{G}_D \|_\infty \| G_D \|_\infty \sum_{k=r+1}^{n} \sigma_k^{PR}. \\
(G_D(s) := G(s) + D^T, \hat{G}_D(s) := \hat{G}(s) + D^T.)
\]
Balancing for Simulation of Passive Systems
Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- For $m = p$, P, Q solve dual AREs

 $$0 = \tilde{A}P + P\tilde{A}^T + PC^T\tilde{R}^{-1}CP + B\tilde{R}^{-1}B^T,$$
 $$0 = \tilde{A}^TQ + Q\tilde{A} + QB\tilde{R}^{-1}B^TQ + C^T\tilde{R}^{-1}C,$$

 where $\tilde{R} = D + D^T$, $\tilde{A} = A - B\tilde{R}^{-1}C$.
- Preserves stability, strict passivity; needs stability of \tilde{A}.
- Computable error bound $[\text{Gugercin/Antoulas '03, B. '05}]$:

 $$\| G - \hat{G}^{\text{PR}} \|_{H_\infty} \leq 2\| R \|^2 \| \hat{G}_D \|_{\infty} \| G_D \|_{\infty} \sum_{k=r+1}^{n} \sigma_k^{\text{PR}}.$$

 ($G_D(s) := G(s) + D^T$, $\hat{G}_D(s) := \hat{G}(s) + D^T.$)
Balancing for Control, Simulation, Inverse Problems

Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma$, $\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0$ at size r.

Balanced Stochastic Truncation (BST) \hspace{1cm} \text{Desai/Pal ’84, Green ’88}

- $P =$ controllability Gramian of $\Sigma \equiv (A, B, C, D)$, i.e., solution of Lyapunov equation $AP + PA^T + BB^T = 0$.
- $Q =$ observability Gramian of right spectral factor of power spectrum of Σ, i.e., solution of ARE
 \[A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0, \]
Balancing for Control, Simulation, Inverse Problems

Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Balanced Stochastic Truncation (BST) \text{Desai/Pal '84, Green '88}

- \(P = \) controllability Gramian of \(\Sigma \equiv (A, B, C, D) \), i.e., solution of Lyapunov equation \(AP + PA^T + BB^T = 0 \).
- \(Q = \) observability Gramian of right spectral factor of power spectrum of \(\Sigma \), i.e., solution of ARE
 \[
 A_W^T Q + Q A_W + Q B_W (D D^T)^{-1} B_W^T Q + C^T (D D^T)^{-1} C = 0,
 \]
 where \(A_W := A - B_W (D D^T)^{-1} C, \ B_W := BD^T + PC^T \).
- Preserves stability; needs stability of \(A_W \).
- Computable relative error bound [Green '88]:
 \[
 \| \Delta_{\text{BST}} \|_{H_\infty} = \| G^{-1} (G - \hat{G}_{\text{BST}}) \|_{H_\infty} \leq \prod_{j=r+1}^{n} \frac{1 + \sigma_j^{\text{BST}}}{1 - \sigma_j^{\text{BST}}} - 1,
 \]
 \(\leadsto \) uniform approximation quality over full frequency range.
- Note: \(|\sigma_j^{\text{BST}}| \leq 1 \).
Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Balanced Stochastic Truncation (BST) \(\text{Desai/Pal '84, Green '88} \)

- \(P = \) controllability Gramian of \(\Sigma \equiv (A, B, C, D) \), i.e., solution of Lyapunov equation \(AP + PA^T + BB^T = 0 \).

- \(Q = \) observability Gramian of right spectral factor of power spectrum of \(\Sigma \), i.e., solution of ARE

\[
A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,
\]

where \(A_W := A - B_W (DD^T)^{-1} C, B_W := BD^T + PC^T \).

- Preserves stability; needs stability of \(A_W \).

- Computable relative error bound [Green '88]:

\[
\| \Delta_{\text{BST}} \|_{H_\infty} = \| G^{-1} (G - \hat{G}^{\text{BST}}) \|_{H_\infty} \leq \prod_{j=r+1}^{n} \frac{1 + \sigma_j^{\text{BST}}}{1 - \sigma_j^{\text{BST}}} - 1,
\]

\(\leadsto \) uniform approximation quality over full frequency range.

Note: \(|\sigma_j^{\text{BST}}| \leq 1 \).
Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \)
\(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Balanced Stochastic Truncation (BST)

- \(P = \) controllability Gramian of \(\Sigma \equiv (A, B, C, D) \), i.e., solution of Lyapunov equation \(AP + PA^T + BB^T = 0 \).
- \(Q = \) observability Gramian of right spectral factor of power spectrum of \(\Sigma \), i.e., solution of ARE
 \[
 A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,
 \]
 where \(A_W := A - B_W (DD^T)^{-1} C \), \(B_W := BD^T + PC^T \).
- Zeros of \(G(s) \) are preserved in \(\hat{G}(s) \).
 \[
 G(s) \text{ minimum-phase} \implies \hat{G}(s) \text{ minimum-phase}.
 \]
- Error bound for inverse system [B. '03]
 If \(G(s) \) is square, minimal, stable, minimum-phase, nonsingular on \(j\mathbb{R}, \)
 then
 \[
 \|G^{-1} - \hat{G}^{-1}\|_{\infty} \leq \left(\prod_{j=r+1}^{n} \frac{1 + \sigma_j^{\text{BST}}}{1 - \sigma_j^{\text{BST}}} - 1 \right) \|\hat{G}^{-1}\|_{\infty}.
 \]
Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. \(P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma \), \(\sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} \geq \ldots \sigma_n \geq 0 \) at size \(r \).

Balanced Stochastic Truncation (BST)
Desai/Pal ’84, Green ’88

- \(P = \) controllability Gramian of \(\Sigma \equiv (A, B, C, D) \), i.e., solution of Lyapunov equation \(AP + PA^T + BB^T = 0 \).
- \(Q = \) observability Gramian of right spectral factor of power spectrum of \(\Sigma \), i.e., solution of ARE

\[
A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,
\]

where \(A_W := A - B_W (DD^T)^{-1} C, B_W := BD^T + PC^T \).

- Zeros of \(G(s) \) are preserved in \(\hat{G}(s) \). \(\implies \)

\(G(s) \) minimum-phase \(\implies \hat{G}(s) \) minimum-phase.

- Error bound for inverse system \([B. '03]\)

If \(G(s) \) is square, minimal, stable, minimum-phase, nonsingular on \(j\mathbb{R} \), then

\[
\| G^{-1} - \hat{G}^{-1} \|_{H_\infty} \leq \left(\prod_{j=r+1}^{n} \frac{1 + \sigma_{j}^{\text{BST}}}{1 - \sigma_{j}^{\text{BST}}} - 1 \right) \| \hat{G}^{-1} \|_{H_\infty}.
\]
Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) – based on bounded real lemma [Opdenacker/Jonckheere '88];
- H_∞ balanced truncation (HinfBT) – closed-loop balancing based on H_∞ compensator [Mustafa/Glover '91].

Both approaches require solution of dual AREs.

- Frequency-weighted versions of the above approaches.
Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices \(P = S^T S, \ Q = R^T R \), compute balancing state-space transformation so that

\[
P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,
\]

and truncate corresponding realization at size \(r \) with \(\sigma_r > \sigma_{r+1} \).

All balancing-related methods have nice theoretical properties that make them appealing for applications in simulation, control, optimization, inverse problems.
Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$ P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

All balancing-related methods have nice theoretical properties that make them appealing for applications in simulation, control, optimization, inverse problems.

But: computationally demanding w.r.t. to memory and CPU time; need efficient solvers for linear (Lyapunov) and nonlinear (Riccati) matrix equations!
General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

\[
0 = \mathcal{L}(Q) := A^T Q + QA + W, \\
0 = \mathcal{R}(Q) := A^T Q + QA - QGQ + W.
\]

In large scale applications from semi-discretized control problems for PDEs,

- $n = 10^3 - 10^6$ ($\implies 10^6 - 10^{12}$ unknowns!),
- A has sparse representation ($A = -M^{-1}K$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $O(n^3)$ methods are not applicable!
General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

\[
0 = \mathcal{L}(Q) := A^T Q + QA + W,
\]
\[
0 = \mathcal{R}(Q) := A^T Q + QA - QGQ + W.
\]

In large scale applications from semi-discretized control problems for PDEs,

- $n = 10^3 - 10^6$ ($\Rightarrow 10^6 - 10^{12}$ unknowns!),
- A has sparse representation ($A = -M^{-1}K$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!
Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- \(\Omega = [0, 1] \),
- FEM discretization using linear B-splines,
- \(h = 1/100 \implies n = 101 \).

Idea: \(Q = Q^T \geq 0 \implies \)

\[
Q = ZZ^T = \sum_{k=1}^{n} \lambda_k z_k z_k^T \approx Z^{(r)}(Z^{(r)})^T = \sum_{k=1}^{r} \lambda_k z_k z_k^T.
\]
Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1]$,
- FEM discretization using linear B-splines,
- $h = 1/100 \Rightarrow n = 101$.

Idea: $Q = Q^T \succeq 0 \implies$

$$Q = ZZ^T = \sum_{k=1}^{n} \lambda_k z_k z_k^T \approx Z^{(r)} (Z^{(r)})^T = \sum_{k=1}^{r} \lambda_k z_k z_k^T.$$
For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}$ ($\omega \ll n$), consider Lyapunov equation

$$AX + XA^T = -BB^T.$$

ADI Iteration:

$$\begin{align*}
(A + p_k I)X_{(j-1)/2} &= -BB^T - X_{k-1}(A^T - p_k I) \\
(A + \overline{p_k} I)X_k^T &= -BB^T - X_{(j-1)/2}(A^T - \overline{p_k} I)
\end{align*}$$

with parameters $p_k \in \mathbb{C}^-$ and $p_{k+1} = \overline{p_k}$ if $p_k \notin \mathbb{R}$.

For $X_0 = 0$ and proper choice of p_k: $\lim_{k \to \infty} X_k = X$ superlinear.

Re-formulation using $X_k = Y_k Y_k^T$ yields iteration for Y_k...
For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}$ ($w \ll n$), consider Lyapunov equation

$$AX + XA^T = -BB^T.$$

ADI Iteration:

[WACHSPRESS 1988]

$$(A + p_k I)X_{(j-1)/2} = -BB^T - X_{k-1}(A^T - p_k I)$$

$$(A + \overline{p_k} I)X_k^T = -BB^T - X_{(j-1)/2}(A^T - \overline{p_k} I)$$

with parameters $p_k \in \mathbb{C}^-$ and $p_{k+1} = \overline{p_k}$ if $p_k \notin \mathbb{R}$.

For $X_0 = 0$ and proper choice of p_k: $\lim_{k \to \infty} X_k = X$ superlinear.

Re-formulation using $X_k = Y_k Y_k^T$ yields iteration for Y_k...
Factored ADI Iteration
Lyapunov equation $0 = AX + XA^T + BB^T$.

Setting $X_k = Y_k Y_k^T$, some algebraic manipulations \implies

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

\[
V_1 \leftarrow \sqrt{-2\text{Re}(p_1)}(A + p_1 I)^{-1}B, \quad Y_1 \leftarrow V_1
\]

FOR $j = 2, 3, \ldots$

\[
V_k \leftarrow \frac{\text{Re}(p_k)}{\text{Re}(p_{k-1})} \left(V_{k-1} - (p_k + p_{k-1})(A + p_k I)^{-1}V_{k-1} \right)
\]

\[
Y_k \leftarrow \begin{bmatrix} Y_{k-1} & V_k \end{bmatrix}
\]

\[
Y_k \leftarrow \text{rrlq}(Y_k, \tau) \quad \% \text{column compression}
\]

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where

\[
Y_{k_{\max}} = \begin{bmatrix} V_1 & \ldots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \end{bmatrix} \in \mathbb{C}^{n \times m}.
\]

Note: Implementation in real arithmetic possible by combining two steps.
Factored ADI Iteration

Lyapunov equation $0 = AX + XA^T + BB^T$.

Setting $X_k = Y_k Y_k^T$, some algebraic manipulations \implies

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>$\sqrt{-2\text{Re}(p_1)}(A + p_1 I)^{-1}B$, $Y_1 \leftarrow V_1$</td>
</tr>
<tr>
<td>FOR $j = 2, 3, \ldots$</td>
<td></td>
</tr>
<tr>
<td>V_k</td>
<td>$\sqrt{\frac{\text{Re}(p_k)}{\text{Re}(p_{k-1})}} \left(V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_k I)^{-1}V_{k-1} \right)$</td>
</tr>
<tr>
<td>Y_k</td>
<td>$\begin{bmatrix} Y_{k-1} & V_k \end{bmatrix}$</td>
</tr>
<tr>
<td>Y_k</td>
<td>$\text{rrlq}(Y_k, \tau)$ % column compression</td>
</tr>
</tbody>
</table>

At convergence, $Y_{k_{\text{max}}} Y_{k_{\text{max}}}^T \approx X$, where

$$Y_{k_{\text{max}}} = \begin{bmatrix} V_1 & \ldots & V_{k_{\text{max}}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \end{bmatrix} \in \mathbb{C}^{n \times m}.$$

Note: Implementation in real arithmetic possible by combining two steps.
Factored Galerkin-ADI Iteration

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1. Compute orthonormal basis $\text{range}(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n, \dim Z = r$.
2. Set $\hat{A} := Z^T AZ, \hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A} \hat{X} + \hat{X} \hat{A}^T + \hat{B} \hat{B}^T = 0$.
4. Use $X \approx Z \hat{X} Z^T$.

Examples:

- Krylov subspace methods, i.e., for $m = 1$:
 \[Z = \mathcal{K}(A, B, r) = \text{span}\{B, AB, A^2B, \ldots, A^{r-1}B\} \]
 [Jaimoukha/Kasenally '94, Jbilou '02–'08].
- K-PIK [Simoncini '07],
 \[Z = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r). \]
Factored Galerkin-ADI Iteration

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1. Compute orthonormal basis $\text{range}(Z)$, $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, $\dim Z = r$.
2. Set $\hat{A} := Z^T AZ$, $\hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
4. Use $X \approx Z\hat{X}Z^T$.

Examples:

- Krylov subspace methods, i.e., for $m = 1$:

 $$Z = \mathcal{K}(A, B, r) = \text{span}\{B, AB, A^2B, \ldots, A^{r-1}B\}$$

 [Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

- K-PIK [Simoncini ’07],

 $$Z = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$
Factored Galerkin-ADI Iteration
Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:
1. Compute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim $Z = r$.
2. Set $\hat{A} := Z^T AZ$, $\hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
4. Use $X \approx Z\hat{X}Z^T$.

Examples:

- **ADI subspace** [B./R.-C. Li/Truhar ’08]:

 \[
 Z = \text{colspan} [V_1, \ldots, V_r].
 \]

 Note: ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
Factored Galerkin-ADI Iteration

Numerical example

FEM semi-discretized control problem for parabolic PDE:
- optimal cooling of rail profiles (⇝ later),
- $n = 20, 209, m = 7, p = 6$.

Good ADI shifts

Iteration history for controllability gramian

iteration number

normalized residual

no projection

every step

every 5 steps

Iteration history for observability gramian

iteration number

normalized residual

no projection

every step

every 5 steps

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
FEM semi-discretized control problem for parabolic PDE:
- optimal cooling of rail profiles (⇝ later),
- $n = 20, 209$, $m = 7$, $p = 6$.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.
Newton’s Method for AREs

Consider \(0 = \mathcal{R}(Q) = C^T C + A^T Q + QA - QBB^T Q \).

Frechét derivative of \(\mathcal{R}(Q) \) at \(Q \):

\[
\mathcal{R}_Q' : Z \rightarrow (A - BB^T Q)^T Z + Z(A - BB^T Q).
\]

Newton-Kantorovich method:

\[
Q_{j+1} = Q_j - (\mathcal{R}_Q')^{-1} \mathcal{R}(Q_j), \quad j = 0, 1, 2, \ldots
\]
Newton’s Method for AREs

Consider \(0 = \mathcal{R}(Q) = C^T C + A^T Q + QA - QBB^T Q \).

Frechét derivative of \(\mathcal{R}(Q) \) at \(Q \):
\[
\mathcal{R}_Q' : Z \rightarrow (A - BB^T Q)^T Z + Z(A - BB^T Q).
\]

Newton-Kantorovich method:
\[
Q_{j+1} = Q_j - (\mathcal{R}_Q')^{-1} \mathcal{R}(Q_j), \quad j = 0, 1, 2, \ldots
\]

Newton’s method (with line search) for AREs

FOR \(j = 0, 1, \ldots \)

1. \(A_j \leftarrow A - BB^T Q_j =: A - BK_j. \)
2. Solve the Lyapunov equation \(A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j). \)
3. \(Q_{j+1} \leftarrow Q_j + t_j N_j. \)

END FOR \(j \)
Re-write Newton’s method for AREs

\[
A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j)
\]

\[
\iff
\]

\[
A_j^T (Q_j + N_j) + (Q_j + N_j) A_j = -C^T C - Q_j BB^T Q_j
\]

\[
= Q_{j+1}
\]

\[
= Q_{j+1}
\]

\[
= -W_j W_j^T
\]

Set \(Q_j = Z_j Z_j^T \) for \(\text{rank}(Z_j) \ll n \)

\[
A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T
\]

Factored Newton Iteration \([B./L/P\text{Enzl} '99/'08]\)

Solve Lyapunov equations for \(Z_{j+1} \) directly by factored ADI iteration and use ‘sparse + low-rank’ structure of \(A_j \).
Re-write Newton’s method for AREs

\[A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j) \]

\[\iff \]

\[A_j^T (Q_j + N_j) + (Q_j + N_j) A_j = -C^T C - Q_j B B^T Q_j \]

\[=: -W_j W_j^T \]

Set \(Q_j = Z_j Z_j^T \) for \(\text{rank}(Z_j) \ll n \)

\[A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T \]

Factored Newton Iteration [B./LI/PENZL ’99/’08]

Solve Lyapunov equations for \(Z_{j+1} \) directly by factored ADI iteration and use ‘sparse + low-rank’ structure of \(A_j \).
- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n = 22.500$, $m = p = 1$, 10 shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

![Graph 1](image1.png)

![Graph 2](image2.png)
Performance of Newton’s method for accuracy $\sim 1/n$

<table>
<thead>
<tr>
<th>grid</th>
<th>unknowns</th>
<th>$\frac{|R(P)|_F}{|P|_F}$</th>
<th>it. (ADI it.)</th>
<th>CPU (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8×8</td>
<td>2,080</td>
<td>4.7e-7</td>
<td>2 (8)</td>
<td>0.47</td>
</tr>
<tr>
<td>16×16</td>
<td>32,896</td>
<td>1.6e-6</td>
<td>2 (10)</td>
<td>0.49</td>
</tr>
<tr>
<td>32×32</td>
<td>524,800</td>
<td>1.8e-5</td>
<td>2 (11)</td>
<td>0.91</td>
</tr>
<tr>
<td>64×64</td>
<td>8,390,656</td>
<td>1.8e-5</td>
<td>3 (14)</td>
<td>7.98</td>
</tr>
<tr>
<td>128×128</td>
<td>134,225,920</td>
<td>3.7e-6</td>
<td>3 (19)</td>
<td>79.46</td>
</tr>
</tbody>
</table>

Here,

- Convection-diffusion equation,
- $m = 1$ input and $p = 2$ outputs,
- $P = P^T \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.

Confirms mesh independence principle for Newton-Kleinman [Burns/Sachs/Zietsmann 2006].
Co-integration of solid fuel with silicon micro-machined system.

Goal: Ignition of solid fuel cells by electric impulse.

Application: nano satellites.

Thermo-dynamical model, ignition via heating an electric resistance by applying voltage source.

Design problem: reach ignition temperature of fuel cell w/o firing neighboring cells.

Spatial FEM discretization of thermo-dynamical model \leadsto linear system, $m = 1$, $p = 7$.

Source: The Oberwolfach Benchmark Collection [http://www.imtek.de/simulation/benchmark]

Courtesy of C. Rossi, LAAS-CNRS/EU project “Micropyros”.
- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements \(n = 4, 257 \) \((11, 445)\) \(m = 1, p = 7 \).
- Reduced model computed using \texttt{SpaRed}, modal truncation using \texttt{ARPACK}, and Z. Bai’s PVL implementation.
Numerical Examples: Simulation
Microthruster (MEMS)

- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements \(\rightarrow n = 4,257 \) (11,445) \(m = 1, p = 7 \).
- Reduced model computed using \texttt{SPARED}, modal truncation using ARPACK, and Z. Bai’s PVL implementation.

Relative error \(n = 4,257 \)

![Graph showing relative error for different methods](image)

- Green: ET
- Orange: PVL, \(s_0 = 1 \)
- Pink: PVL, \(s_0 = 1e4 \)
- Blue: MT
Model Reduction of Large-Scale Systems

Peter Benner
Introduction

System-Theoretic Model Reduction
Numerical Examples
Simulation Control
Conclusions and Outlook

Numerical Examples: Simulation
Microthruster (MEMS)

- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements \(n = 4, 257 \) \((11, 445)\) \(m = 1, p = 7 \).
- Reduced model computed using \texttt{SpaRed}, modal truncation using ARPACK, and Z. Bai’s PVL implementation.

Relative error \(n = 4, 257 \)

Relative error \(n = 11, 445 \)
Numerical Examples: Simulation
Microthruster (MEMS)

- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements $\implies n = 4,257$ $(11,445)$ $m = 1$, $p = 7$.
- Reduced model computed using SpaRed, modal truncation using ARPACK, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL
Numerical Examples: Simulation
Microthruster (MEMS)

- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements \(\rightsquigarrow n = 4, 257 \) \((11, 445) \) \(m = 1, p = 7 \).
- Reduced model computed using \texttt{SPARED}, modal truncation using \texttt{ARPACK}, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL

Frequency Response BT/MT
- Passive device used for RF filters etc.
- $n = 1,434$, $m = 1$, $p = 1$.

Spiral Inductor (Micro Electronics)

- Passive device used for RF filters etc.
- $n = 1,434$, $m = 1$, $p = 1$.
- Numerical rank of Gramians is $34/41$.
- $r = 20$ passive model computed by PRBT (MorLab).

Frequency Response Analysis

Absolute Error

Mathematical model: boundary control for linearized 2D heat equation.

\[
c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega \\
\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \leq k \leq 7, \\
\frac{\partial}{\partial n} x = 0, \quad \xi \in \Gamma_7.
\]

\[\implies m = 7, \ p = 6.\]

FEM Discretization, different models for initial mesh \((n = 371)\), 1, 2, 3, 4 steps of mesh refinement \(\Rightarrow\) \(n = 1357, 5177, 20209, 79841\).

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger '99'/01, Penzl '99, Saak '03.
Numerical Examples: Control
Optimal Cooling of Steel Profiles

\(n = 1357, \text{ Absolute Error} \)

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

\(n = 79841, \text{ Absolute error} \)

- BT model computed using SpaRed,
- computation time: 8 min.
Numerical Examples: Control
2D Heat Control

- FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- $n = 22.500, m = p = 1.$
- Computed reduced-order model (BT): $r = 6$, BT error bound $\delta = 1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Transfer function approximation

![Graph showing transfer functions and absolute error in transfer function.](image-url)
FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.

- \(n = 22.500, \ m = p = 1 \).
- Computed reduced-order model (BT): \(r = 6 \), BT error bound \(\delta = 1.7 \cdot 10^{-3} \).
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Computed controls and outputs (implicit Euler)
FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.

- $n = 22.500$, $m = p = 1$.
- Computed reduced-order model (BT): $r = 6$, BT error bound $\delta = 1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Errors in controls and outputs
Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.

FDM $\sim n = 4496, m = 2$; 4 sensor locations $\sim p = 4$.

Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.

Computed reduced-order model: $r = 10$.

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\sim n = 4496, m = 2$; 4 sensor locations $\sim p = 4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r = 10$.

Numerical Examples: Control

BT vs. LQG BT

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightarrow n = 4496, m = 2$; 4 sensor locations $\rightarrow p = 4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r = 10$.

Conclusions and Outlook

- Main message:

 Balanced truncation and family are applicable to large-scale systems.
 (If efficient numerical algorithms are employed.)

- **Applications:** nanoelectronics, microsystems technology, optimal control, machine tool design, systems biology, . . .

- Efficiency of numerical algorithms can be further enhanced, several details require deeper investigation.

- Algorithms for data-sparse systems using formatted arithmetic for \mathcal{H}-matrices [Baur/B. ’06/’08].

- Application to 2nd order systems \rightsquigarrow talk of Jens Saak.

- Extension to descriptor systems possible.
 [Stykel since ’02, B. 03/’08, Freitas/Martins/Rommes ’08, Heinkenschloß/Sorensen/Sun ’06/’08].

- Combination of BT with sparse grid interpolation for parametric model reduction [Baur/B. ’08/’09].
Main message:

Balanced truncation and family are applicable to large-scale systems.
(If efficient numerical algorithms are employed.)

Applications: nanoelectronics, microsystems technology, optimal control, machine tool design, systems biology, . . .

Efficiency of numerical algorithms can be further enhanced, several details require deeper investigation.

Extension to **nonlinear systems** employing Carleman bilinearization and tensor product structure of Krylov subspaces in combination with **balanced truncation for bilinear systems** [B./Damm ’09] quite promising, in particular for **polynomial nonlinearities** as often encountered in biological systems.

Theory and numerical algorithm for application to **stochastic systems:** [B./Damm ’09]; need algorithmic enhancements for really large-scale problems.
Support

BMBF research network **SyreNe**

TU Berlin (T. Stykel, A. Steinbrecher)
TU Braunschweig (H. Faßbender, J. Amorocho, M. Bollhöfer, A. Eppler)
TU Chemnitz (P. Benner, A. Schneider, T. Mach)
U Hamburg (M. Hinze, M. Vierling, M. Kunkel)
FhG-ITWM Kaiserslautern (P. Lang, O. Schmidt)
Infineon Technologies AG (P. Rotter)
NEC Europe Ltd. (A. Basermann, C. Neff)
Qimonda AG (G. Denk)
Support

O-MOORE-NICE!
Operational model order reduction for nanoscale IC electronics

EU support via Marie Curie Host Fellowships for the Transfer of Knowledge (ToK) Industry-Academia Partnership Scheme.

TU Chemnitz (P. Benner, M. Striebel)
TU Eindhoven (W. Schilders, D. Harutyunyan)
U Antwerpen (T. Dhaene, L. Di Tommasi)
NXP Semiconductors (J. ter Maten, J. Rommes)
Support

DFG Projects