Model order reduction of mechanical systems subjected to moving loads by the approximation of the input

Alexander Vasilyev, Tatjana Stykel

Institut für Mathematik, Universität Augsburg

ModRed 2013
MPI Magdeburg, December 11-13, 2013
Elastic multibody systems (EMBS) → EMBS with moving loads

- **Vehicle-bridge interaction**

- **Working gears**

- **Cableways**

etc.
PDEs \xrightarrow{FEM} ODEs

Example

\[a_0 \frac{\partial^4}{\partial x^4} w(x,t) + a_1 \frac{\partial^2}{\partial t^2} w(x,t) + a_2 \frac{\partial}{\partial t} w(x,t) = \rho(x,t)u(t) \]

\[b(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_N(t) \end{bmatrix}, \quad b_i(t) = \int_0^l \rho(x,t)\phi_i(x)dx, \quad i = 1, \ldots, N \]

\[M\ddot{q}(t) + D\dot{q}(t) + Kq(t) = b(t)u(t) \]

\[y(t) = C(t)q(t) \]

\[M, D, K \in \mathbb{R}^{N \times N}, \quad q \in \mathbb{R}^N, \quad b(t) \in \mathbb{R}^N, \quad C(t) \in \mathbb{R}^{p \times N}, \quad y(t) \in \mathbb{R}^p \]

many forces $\xrightarrow{I.}$ input matrix $B(t) \in \mathbb{R}^{N \times m}$ instead of $b(t)$
High computational cost

Model order reduction (MOR)

MOR by projection: \(q(t) \approx V \tilde{q}(t) \), \(\tilde{q} \in \mathbb{R}^r \), \(r \ll N \)

\[
W^T M V \ddot{q}(t) + W^T D V \dot{q}(t) + W^T K V \tilde{q}(t) = W^T B(t) u(t)
\]

\[
\tilde{M} \in \mathbb{R}^{r \times r}, \quad \tilde{D} \in \mathbb{R}^{r \times r}, \quad \tilde{K} \in \mathbb{R}^{r \times r}, \quad \tilde{B}(t) \in \mathbb{R}^{r \times m}
\]

\[
\tilde{y}(t) = C(t) V \tilde{q}(t)
\]

\[
\tilde{y}(t) \in \mathbb{R}^p, \quad \tilde{C}(t) \in \mathbb{R}^{p \times r}
\]

Systems with time-varying input and/or output matrices:

\[
V, W - ???
\]
II. Approximation of the input matrix

\[\rho(x,t) = g(x - \zeta(t)), \quad \zeta(t) \text{ - a position of a «centre of force» at } t \]

\[\zeta(t) \in \Omega \subseteq [0, l] \]

\[b(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_N(t) \end{bmatrix}, \quad b_i(t) = \int_0^l g(x - \zeta(t)) \phi_i(x) \, dx, \quad i=1,\ldots,N \]

Consider a SISO system

\[M \ddot{q}(t) + D \dot{q}(t) + K q(t) = b(t) u(t) \]

\[y(t) = b^T(t) q(t) \quad \text{with} \quad t \in [0, T] \]

Naive approach:

\[M \ddot{q}(t) + D \dot{q}(t) + K q(t) = I(b(t) u(t)) \]

\[y(t) = b^T(t) q(t) \]

Difficulty: many inputs
II. Approximation of the input matrix

Goal: approximate $b(t)$ in a lower dimension subspace

\[b(t) \approx \hat{B} \chi(\zeta(t)) = \sum_{i=1}^{n} \hat{b}_i \chi_i(\zeta(t)), \quad n \ll N \]

\[M \ddot{q}(t) + D \dot{q}(t) + K q(t) = \hat{B} \dot{u}(t) \quad \text{with} \quad \dot{u}(t) = \chi(\zeta(t)) u(t) \]
\[\ddot{y}(t) = \hat{B}^{T} \dot{q}(t) \]

Note: $y(t) \approx \chi(\zeta(t))^{T} \ddot{y}(t)$

Error bound:

\[\left\| \begin{bmatrix} q(t) \\ \dot{q}(t) \end{bmatrix} - \begin{bmatrix} \dot{q}(t) \\ \ddot{q}(t) \end{bmatrix} \right\|_\infty \leq \eta \left\| b - \hat{B} \chi \right\|_\infty \]

Two approximation approaches:

1. given the matrix \hat{B}, find the vector $\chi(\zeta)$
2. given the vector $\chi(\zeta)$, find the matrix \hat{B}

such that $\left\| b - \hat{B} \chi \right\|_\infty \rightarrow \min$
II. Approximation of the input matrix

\[b(t) = \begin{bmatrix} \varphi_1(\xi(t)) \\ \varphi_2(\xi(t)) \\ \vdots \\ \varphi_N(\xi(t)) \end{bmatrix} \approx \begin{bmatrix} \hat{b}_{11} & \cdots & \hat{b}_{1n} \\ \hat{b}_{21} & \cdots & \hat{b}_{2n} \\ \vdots & \ddots & \vdots \\ \hat{b}_{N1} & \cdots & \hat{b}_{Nn} \end{bmatrix} \begin{bmatrix} \chi_1(\xi(t)) \\ \chi_2(\xi(t)) \\ \vdots \\ \chi_N(\xi(t)) \end{bmatrix} = \hat{B} \chi(\xi(t)) \]

- **approximation by polynomial expansion** \(\varphi_i(x) \approx \sum_{j=1}^{n} \hat{b}_{ij} P_{j-1}(x), \quad i=1,\ldots,N \),
 where \(P_0(x),\ldots,P_{n-1}(x) \) are orthogonal polynomials;

- **B-spline interpolation** \(\varphi_i(x) \approx \sum_{j=1}^{n} \hat{b}_{ij} \beta_{j-2}(x), \quad i=1,\ldots,N \)
 where \(\beta_{-1}(x),\ldots,\beta_{n-2}(x) \) are B-splines;

- **linear least square method (LLSM)** \(\varphi_i(x) = \varphi_i^{(N)}(x) \approx \sum_{j=1}^{n} \hat{b}_{ij} \phi_j^{(n)}(x), \quad i=1,\ldots,N \)
 where \(\phi_1^{(n)}(x),\ldots,\phi_n^{(n)}(x) \) are FEM basis functions on a coarse grid;

- **empirical interpolation method (EIM)**
 [Barrault, Maday, Nguyen, Patera, 2004]
III. Model order reduction of mechanical systems

Balanced truncation
- solving Lyapunov equations is required
- use SO-LR-ADI method specially adapted for second-order systems [Benner, Kürschner, Saak, 2012]

But, for mechanical systems with a weak damping, this method converges very slowly

Krylov subspace methods
- SOAR [Bai, Su, 2005; Salimbahrami, 2005]
- SOR-IRKA, SO-IRKA [Wyatt, 2012]
- AORA [Lee, Chu, Feng, 2004; Bodendieck, Bollhöfer, 2013]
- MIRKA [Soppa, 2011]

Choice of interpolation points and directions for second-order systems is still unclear

Our approach: subspace acceleration poles finding combined with an extension of a frequency range
Test model with a moving load: 1D Euler-Bernoulli beam equation

\[
\rho A \frac{\partial^2}{\partial t^2} w(x,t) + 2 \rho A \omega_d \frac{\partial}{\partial t} w(x,t) + EI \frac{\partial^4}{\partial x^4} w(x,t) = \delta(x-\zeta(t)) u
\]

\((x,t) \in (0,l) \times (0,T) \) (has an analytical solution) \[\text{[Fryba, 1999]}\]

- \(w(x,t)\) is a vertical deflection of the beam
- \(\delta(x-\zeta(t))\) is a point force density
- \(\nu\) is a velocity of the moving load
- \(\zeta(t)=\nu t\) is an instantaneous position of a force
- \(u\) is a magnitude of the moving load
- \(\rho\) is a mass density
- \(A\) is a cross section area
- \(\omega_d\) is a circular frequency of damping
- \(E\) is a Young modulus
- \(I\) is an area moment of inertia

with simply supported ends of the beam

\[
w(0,t)=0, \quad \frac{\partial^2}{\partial x^2} w(0,t)=0,
\]

\[
w(l,t)=0, \quad \frac{\partial^2}{\partial x^2} w(l,t)=0
\]

and initial conditions

\[
w(x,0)=0, \quad \frac{\partial}{\partial t} w(x,0)=0
\]
input distribution vector

\[
b(t) = \begin{bmatrix}
 b_1(t) \\
 b_2(t) \\
 \vdots \\
 b_N(t)
\end{bmatrix}, \quad b_i(t) = \int_0^l \delta(x - \zeta(t)) \phi_i(x) \, dx = \phi_i(\zeta(t)), \quad i = 1, \ldots, N,
\]

where \(\phi_i(x) \) is a finite element method basis function corresponded to some node and \(\zeta(t) \in \Omega = [0, l] \)

\[
M \ddot{q}(t) + D \dot{q}(t) + K q(t) = b(t)u
\]

\[
y(t) = b^T(t)q(t)
\]

\(b(t) \) - moving input distribution \[b(t)u \) - moving load

\(c(t) = b^T(t) \) - moving output distribution \[y(t) \) - moving observation
Approximation of FEM basis functions

\[\phi_i(\zeta(t)) \approx \sum_{j=1}^{n} \hat{b}_{ij} \chi_j(t), \quad j = 1, \ldots, N, \quad n \ll N \]
IV. Numerical experiments

Approximated output by approximations of the input

\[N = 5000, \quad n = 50 \]

\[\phi_i(\xi(t)) \approx \sum_{j=1}^{50} \hat{b}_{ij} \chi_j(t), \quad i=1, \ldots, 5000 \]
Approximated output by approximations of the input

\[N = 50, \quad n = 50 \]
Approximated output of the reduced system with moving load

\[N = 5000, \quad n = 50, \quad r = 20 \]

Reduction is carried out by the software MatMorembs

http://www.itm.uni-stuttgart.de/research/model_reduction/MOREMBS_MatMorembs_en.php

Eberhard, Lehner, Fehr, Nowakowski, Fischer, Kürschner et al.
V. Conclusion

It was considered:

- second-order systems with moving load
- approximation of time-varying input matrix
- model reduction methods for mechanical systems

Further work:

- search of optimal methods to reduction of mechanical systems
- search of new approaches to model reduction of systems with moving load
Further work:

- consideration of more realistic models

for example, a coupled bridge-vehicle system

beam subjected to a moving two-axle system

Thank you for your attention!